Freie Richtungswahl: Neue Methode für Templat-gesteuerte DNA-Synthese in 3‘- und 5‘-Richtung

Forscher der Universität Stuttgart haben die Methode der „Chemical Primer Extension“ weiterentwickelt. Die neue Schutzgruppe kann so schonend entfernt werden, dass DNA-Duplexe aus Primer und Templat dabei nicht auseinanderfallen.<br>

Auch mit chemischen Methoden kann DNA kopiert werden. Ein deutsches Team stellt in der Zeitschrift Angewandte Chemie nun eine weitere Kopier-Methode vor, die wie Zellen einen DNA-Einzelstrang als „Kopiervorlage“ nutzt, aber ohne Enzyme auskommt. Anders als alle bisherigen Verfahren erlaubt sie eine schrittweise Kettenverlängerung sowohl in der von der Natur bevorzugten als auch in der entgegengesetzten, für gängige DNA-Syntheseautomaten typischen Richtung.

Der DNA-Doppelstrang wird in der Zelle für den Kopiervorgang streckenweise getrennt. Einer der Einzelstränge dient dann als „Kopiervorlage“ oder Templat. Polymerase-Enzyme knüpfen die jeweiligen Nukleotide schrittweise zum neuen Gegenstrang zusammen, ausgehend von einem „Anfangsstückchen“, einem Primer. Das Rückgrat eines DNA-Strangs ist eine alternierende Kette aus Zucker-Fünfringen und Phosphatgruppen. Die Kettenverknüpfung erfolgt an den Sauerstoffatomen Nr. 3‘ und Nr. 5‘ der Zucker, das natürliche Kettenwachstum läuft in 3‘-Richtung.

Eine Frage im Zusammenhang mit der Entstehung des Lebens lautet: Wie konnte die Natur DNA- oder RNA-Stränge kopieren, bevor es Polymerasen gab? Mit DNA-Syntheseapparaten können Chemiker seit den 80er Jahren zwar DNA-Stränge herstellen, aber ohne Templat, ohne Primer und nur mit der durch die Reihenfolge der Reagenzienzugabe vorgegebenen Sequenz. Allein sogenannte Schutzgruppen, die eine unkontrollierte Reaktion verhindern, und die programmierte Zuführung der Reagenzien sorgen für die korrekte Abfolge der Basen. So konnte die Natur sicherlich nicht vorgehen. Aber wie könnte eine templatgesteuerte Primerverlängerung rein chemisch, also ohne Enzyme, funktionieren?

Inzwischen wurden Ansätze für eine Methode entwickelt, die „Chemical Primer Extension“ genannt wird und die Reaktion aktivierter Nukleotide mit dem Ende eines leicht modifizierten DNA-Primers beinhalten. Diese haben Clemens Richert, Andreas Kaiser und Sebastan Spies an der Universität Stuttgart nun weiterentwickelt. Sie fanden eine Schutzgruppe, die so schonend entfernt werden kann, dass DNA-Duplexe aus Primer und Templat dabei nicht auseinanderfallen. Mit ihr kann die Reaktivität von Nukleotiden und Primer-Terminus gezielt an- und abgeschaltet werden und die Sequenzinformation des Templatstranges Nukleotid für Nukleotid ausgelesen werden. Damit das klappt, sind sowohl Templat als auch Primer an kleinen Kügelchen fixiert. Wie im Syntheseautomat können gezielt Reagenzien und Bausteine an den Kügelchen vorbei gespült werden. Der Primer bindet an das Templat durch Basenpaarung. An die nächste freie Bindungsstelle des Templats dockt dann ein passendes Nukleotid aus der umgebenden Lösung an. Über aktivierte Phosphat-Einheiten verbinden sich Nukleotid und reaktives Ende des Primers. Die Stellen, die reagieren sollen, wurden insgesamt chemisch so verändert, dass sie reaktiver als bei natürlicher DNA sind. Das Besondere: Die Kettenverlängerung kann nun wahlweise in die 3‘- oder die 5‘-Richtung laufen. Für letzteres gibt es in der Natur kein Vorbild.

Bisher ist das Verfahren noch recht langsam und auf kurze Abschnitte beschränkt. Es sollte sich durch weitere Optimierung der Reaktionsbedingungen und stärkere Automatisierung weiter verbessern lassen.

Angewandte Chemie: Presseinfo 33/2012

Autor: Clemens Richert, Universität Stuttgart (Germany), http://chip.chemie.uni-stuttgart.de/members.html

Angewandte Chemie 2012, 124, No. 33, 8424–8428, Permalink to the article: http://dx.doi.org/10.1002/ange.201203859

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.

Media Contact

Dr. Renate Hoer GDCh

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer