Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forschungsschiff Polarstern startet Richtung Framstraße

06.07.2018

Wissenschaftler erforschen Ozeanographie und Biologie zwischen atlantischem und arktischem Wasser

Am Dienstag, den 10. Juli 2018 wird das Forschungsschiff Polarstern seinen Heimathafen Bremerhaven in Richtung Arktis verlassen. Im Mittelpunkt stehen ozeanographische Langzeitmessungen sowie biologische Forschung in der Wassersäule und am Meeresboden in der Framstraße zwischen Grönland und Spitzbergen.


Eine ausgelöste Verankerung taucht auf.

Foto: Alfred-Wegener-Institut / Martin Schiller

Über sechs Millionen Kubikmeter Wasser transportiert der Westspitzbergenstrom durchschnittlich jede Sekunde durch die östliche Framstraße Richtung Norden. In den letzten 30 Jahren ist die Temperatur dieser Wassermassen durchschnittlich ein Grad Celsius wärmer geworden – das atlantische Wasser ist heute mit drei bis sechs Grad Celsius warm für das Übergangsgebiet in den Arktischen Ozean.

Nur 200 Kilometer westlich strömt minus 1,8 Grad Celsius kaltes Wasser mit Meereis aus dem Arktischen Ozean Richtung Süden. Prinzipiell sind diese Wassermassen voneinander scharf abgegrenzt. Kleinskalige Wirbel sorgen jedoch dafür, dass sie sich vermischen und dass nur ein Teil des warmen Wassers weiter nach Norden in die hohe Arktis strömt. So kann stattdessen beispielsweise warmes Wasser zu den Gletschern gelangen, die an Grönlands Ostküste ins Meer kalben und sie von unten schmelzen.

Wo und wie genau solche Verwirbelungen auftreten, ist eine der Fragestellungen, denen 48 Wissenschaftler um Fahrtleiter Dr. Wilken-Jon von Appen vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) jetzt in der Framstraße nachgehen.

Sie bergen sogenannte Verankerungsketten, die mit Sensoren gespickt sind, die Temperatur, Strömungen und neuerdings noch viele weitere Eigenschaften messen können. Bereits seit dem Jahr 1997 unterhalten AWI-Wissenschaftler gemeinsam mit norwegischen Kollegen eine Reihe von Verankerungen auf etwa 79 Grad nördlicher Breite.

Im Rahmen des Helmholtz-Infrastrukturprojektes FRAM haben sie im Jahr 2016 Verankerungen dort ausgebracht, wo sie Abzweigungen warmen Atlantikwassers nach Westen vermuten.

„Unsere Ozeanmodelle bilden die Strömungsänderungen gut ab. Jetzt bin ich sehr gespannt, ob wir unsere Sensoren tatsächlich dort platzieren konnten, wo Teile der Süd-Nordströmung des warmen Atlantikwassers nach Westen abzweigen“, sagt Wilken von Appen. „Es wäre ein toller Erfolg, mit Messdaten diese Theorie des Wasseraustauschs verifizieren zu können“, so der AWI-Ozeanograph weiter.

Ebenso neugierig sind sein Team und er auf die Messwerte von biologischen und chemischen Sensoren, die an den Verankerungen hängen. Diese in der Erprobung befindlichen Geräte werden einen ganz neuen Blick darauf ermöglichen, wie das Zusammenspiel der Wassermassen die Produktivität in der Eisrandzone beeinflusst. Insgesamt 20 Verankerungen will das Ozeanographie-Team bergen, um die Daten aus bis zu zwei Jahren auszulesen. Anschließend bringen sie dann mit neuen Sensoren und Batterien bestückte Verankerungen aus, um weitere Langzeitdaten in der Framstraße zu erfassen.

Ebenfalls an Bord sind Biologen, die sich die Lebensvielfalt in der Wassersäule anschauen und am Meeresboden untersuchen. Sie wollen beispielsweise herausfinden, welche Arten von Mikroalgen oder Flohkrebse das wärmer werdende Atlantikwasser in die Arktis transportiert.

Deren Verbreitung und Anzahl bestimmt mit, was in die Tiefsee absinkt und dort Bodenlebewesen als Nahrung dienen kann. Neben der Erfassung der Tiere werden auch die Untersuchungen zu Müll in der arktischen Tiefsee fortgesetzt: Ein geschlepptes Kamerasystem fotografiert auf definierten Transekten bereits seit dem Jahr 2002 den Meeresboden.

Spätere Auswertungen sollen dann zeigen, ob die Vermüllung der Arktis weiter zunimmt. Auch Chemiker sind an Bord und werden untersuchen welche Spurenstoffe von den Wassermassen bewegt werden.

Nach knapp vier Wochen Expeditionszeit wird die Polarstern im norwegischen Tromsø einlaufen. Im weiteren Verlauf der Arktissaison stehen dann zwei geowissenschaftliche Expeditionen vor Grönland und in der Zentralarktis auf dem Plan.

Hinweise für Redaktionen

Wenn Sie das Auslaufen vor Ort begleiten möchten, melden Sie sich bis spätestens Montag, 09. Juli 2018 um 11:00 Uhr an bei Folke Mehrtens (Kontakt s.u.).

Druckbare Fotos finden Sie in der Online-Version dieser Pressemitteilung unter: https://www.awi.de/nc/ueber-uns/service/presse-detailansicht/presse/forschungssc...

Videofootage können wir auf Anfrage zur Verfügung stellen.

Ihr wissenschaftlicher Ansprechpartner ist Dr. Wilken-Jon von Appen (Tel.: 0471 4831-2903; E-Mail: wilken-jon.von.appen(at)awi.de), in der Pressestelle unterstützt Sie Dr. Folke Mehrtens (Tel.: 0471 4831-2007; -Mail: medien(at)awi.de).

Folgen Sie dem Alfred-Wegener-Institut auf https://twitter.com/AWI_de und https://www.facebook.com/AlfredWegenerInstitut.

Das Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) forscht in der Arktis, Antarktis und den Ozeanen der gemäßigten sowie hohen Breiten. Es koordiniert die Polarforschung in Deutschland und stellt wichtige Infrastruktur wie den Forschungseisbrecher Polarstern und Stationen in der Arktis und Antarktis für die internationale Wissenschaft zur Verfügung. Das Alfred-Wegener-Institut ist eines der 18 Forschungszentren der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands.

Ralf Röchert | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Magische kolloidale Cluster
11.12.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Kupferverbindung als Recheneinheit in Quantencomputern
11.12.2018 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

Von „Frequenzkämmen“ spricht man bei speziellem Laserlicht, das sich optimal für chemische Sensoren eignet. Eine revolutionäre Technik der TU Wien erzeugt dieses Licht nun viel einfacher und robuster als bisher.

Ein gewöhnlicher Laser hat genau eine Farbe. Alle Photonen, die er abstrahlt, haben genau dieselbe Wellenlänge. Es gibt allerdings auch Laser, deren Licht...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Neue Methode verpasst Mikroskop einen Auflösungsschub

Verspiegelte Objektträger ermöglichen jetzt deutlich schärfere Bilder / 20fach bessere Auflösung als ein gewöhnliches Lichtmikroskop - Zwei Forschungsteams der Universität Würzburg haben dem Hochleistungs-Lichtmikroskop einen Auflösungsschub verpasst. Dazu bedampften sie den Glasträger, auf dem das beobachtete Objekt liegt, mit maßgeschneiderten biokompatiblen Nanoschichten, die einen „Spiegeleffekt“ bewirken. Mit dieser einfachen Methode konnten sie die Bildauflösung signifikant erhöhen und einzelne Molekülkomplexe auflösen, die sich mit einem normalen Lichtmikroskop nicht abbilden lassen. Die Studie wurde in der NATURE Zeitschrift „Light: Science and Applications“ veröffentlicht.

Die Schärfe von Lichtmikroskopen ist aus physikalischen Gründen begrenzt: Strukturen, die näher beieinander liegen als 0,2 tausendstel Millimeter, verschwimmen...

Im Focus: Supercomputer ohne Abwärme

Konstanzer Physiker eröffnen die Möglichkeit, Supraleiter zur Informationsübertragung einzusetzen

Konventionell betrachtet sind Magnetismus und der widerstandsfreie Fluss elektrischen Stroms („Supraleitung“) konkurrierende Phänomene, die nicht zusammen in...

Im Focus: Drei Nervenzellen reichen, um eine Fliege zu steuern

Uns wirft so schnell nichts um. Eine Fruchtfliege kann dagegen schon ein kleiner Windstoß vom Kurs abbringen. Drei große Nervenzellen in jeder Hälfte des Fliegenhirns reichen jedoch aus, um die Fliege mit Hilfe visueller Signale wieder auf Kurs zu bringen.

Bewegen wir uns vorwärts, zieht die Umwelt in die entgegengesetzte Richtung an unseren Augen vorbei. Drehen wir uns, verschiebt sich das Bild der Umwelt im...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungen

Eine Norm für die Reinheitsbestimmung aller Medizinprodukte

10.12.2018 | Veranstaltungen

Fachforum über intelligente Datenanalyse

10.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

11.12.2018 | Physik Astronomie

Besser Bohren – Neues Nanokomposit stabilisiert Bohrflüssigkeiten

11.12.2018 | Geowissenschaften

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics