Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forschung von Chemikern der TU Dortmund liefert neue Erkenntnisse zur Funktionsweise von Enzymen

28.01.2020

Proteine gelten als „Bausteine des Lebens“, da viele chemische Reaktionen mit ihrer Hilfe erfolgen und Zellkommunikation und -bewegung von ihnen abhängig sind. Wer Proteine versteht, kann erforschen, wie bestimmte Krankheiten entstehen oder warum gewisse Umwelteinflüsse krebserregend sind. Das Team um Rasmus Linser, Professor für Physikalische Chemie an der TU Dortmund, hat nun mithilfe innovativer Methoden mehr über die dynamischen Abläufe eines medizinisch wichtigen Enzyms herausgefunden. Enzyme sind Proteine, und das untersuchte Enzym ist auch für viele andere Proteine repräsentativ. Die Ergebnisse wurden kürzlich im „Journal of the American Chemical Society“ veröffentlicht.

Prof. Rasmus Linser forscht an der TU Dortmund schwerpunktmäßig zu Methoden, mit denen man Proteine und ihre Beweglichkeit untersuchen kann. Jetzt haben er und sein Team gemeinsam mit Kollegen von der Ruhr-Universität Bochum und der Ludwig-Maximilians-Universität München mithilfe dieser Methoden neue Erkenntnisse über ein Protein erzielt, das schon seit vielen Jahren im Fokus der pharmakologischen Forschung steht.


Das Fachmagazin Journal of the American Chemical Society zeigt das aktive Zentrum des von Prof. Linser untersuchten Enzyms auf der Titelseite.

Rasmus Linser


Prof. Rasmus Linser (Mitte) mit seinen Mitarbeitern (v.l.) Dr. Himanshu Singh und Dr. Suresh Vasa..

Aliona Kardash/TU Dortmund

Das Enzym hCAII, die humane Carboanhydrase, kommt beinahe überall im Körper vor. Es sorgt als Katalysator dafür, dass Kohlenstoffdioxid und Wasser sich zu Kohlensäure verbinden – und umgekehrt. Diese Reaktion läuft in einer eigens dafür vorgesehenen Tasche des Enzyms ab, die auch „aktives Zentrum“ genannt wird.

Was genau in diesem Zentrum passiert, haben die Forscher mit der sogenannten Festkörper-NMR-Spektroskopie untersucht. Prof. Rasmus Linser ist Spezialist für diese Methode, deren Besonderheit darin besteht, dass sie Informationen über Vorgänge auf einer ganz bestimmten Zeitskala liefern kann – nämlich im Mikro- bis Millisekunden-Bereich.

„Es gibt unterschiedliche Zeitskalen, die für die Erforschung von Proteinen spannend sind“, sagt Linser. „Ganz schnelle Bewegungen lassen sich zum Beispiel mit herkömmlicher NMR-Spektroskopie gut untersuchen. Langsame Bewegungen kann man über Echtzeitexperimente nachvollziehen. Im Mikro- bis Millisekunden-Bereich ist es aber besonders schwer, Informationen zu bekommen.“

Diese Zeitskala ist aber von besonderer Wichtigkeit für die Funktionalität von Proteinen als Enzyme sowie ihre Rolle in der Kommunikation innerhalb der Zelle. Aus diesem Grund hat Linser in den vergangenen Jahren die Festkörper-NMR-Spektroskopie weiterentwickelt. Die Methode untersucht Proteine in fester Phase und ist besonders gut für größere Strukturen geeignet.

Das in der aktuellen Arbeit untersuchte Enzym wurde bislang hauptsächlich mit kristallographischen Methoden erforscht, die Temperaturen von minus 200 Grad erfordern. Das führte dazu, dass Bewegungen, die bei normaler Körpertemperatur stattfinden, nicht erkennbar waren.

Deshalb haben sich Wissenschaftlerinnen und Wissenschaftler das Enzym bislang als steifes, nicht flexibles Konstrukt vorgestellt. „Wir konnten nun erstmals beobachten, dass tatsächlich auf der von uns untersuchten Zeitskala, auf der auch die wichtige enzymatische Katalyse dieses Enzyms stattfindet, deutliche Bewegung im aktiven Zentrum existiert“, berichtet Linser.

Das Team konnte zeigen, dass sich nicht nur das aktive Zentrum des Enzyms auf der Mikrosekundenzeitskala bewegt, sondern auch das Wassernetzwerk, welches darin sitzt. Das Spannende dabei: Die Wassermoleküle besetzen immer wieder ganz bestimmte Stellen in der Tasche. Die einzelnen Wassermoleküle bleiben allerdings nicht lange auf ihren vorgegebenen Plätzen, sondern werden bereits nach Nanosekunden, also nach einer Zeit noch viel kürzer als Mikrosekunden, wieder ausgetauscht.

Das könne man sich vorstellen wie bei einem Bus, in dem ständig neue Menschen sitzen – jedoch immer auf den durch die jeweilige Architektur des Innenraumes vorgegebenen Plätzen, so Linser. Obwohl die einzelnen Wassermoleküle kaum verweilen, zeigen sich auch auf der Mikrosekundenzeitskala Veränderungen in der Struktur – d. h. der vorgegebenen Plätze – des Wassernetzwerks.

Die Veränderungen der Wasserstruktur, so leiten die Forscher ab, könnten einen eigenen Beitrag zur Katalyse leisten, für die die Wasserinteraktionen eine wichtige Komponente sind. Diese Erkenntnis liefert Ansatzpunkte für weitere Arbeiten, zum Beispiel von Kolleginnen und Kollegen aus der Biotechnologie, die sich mit der Nutzung von Enzymen in technischen Anwendungen beschäftigen.

Dass das Wasser eine Rolle auf dieser langsamen, für die Katalyse wichtigen Zeitskala spielt, ist auch eine wichtige Information für die Wissenschaftlerinnen und Wissenschaftler von Resolv. Im Exzellenzcluster der TU Dortmund und der Ruhr-Universität Bochum erforschen sie, wie Lösungsmittel in die Kontrolle, Vermittlung und Steuerung chemischer Reaktionen involviert sind.

Das Team
Den Fachartikel hat Prof. Rasmus Linser gemeinsam mit seinen Mitarbeitern Dr. Himanshu Singh und Dr. Suresh Vasa veröffentlicht. Von der Ruhr-Universität Bochum waren Prof. Lars Schäfer, Dr. Christopher Päslack und Dr. Chandan Das beteiligt. Außerdem wirkten Wissenschaftler von der Ludwig-Maximilians-Universität München mit.

Über Prof. Rasmus Linser
Prof. Rasmus Linser nahm 2018 den Ruf an die TU Dortmund an. Er brachte mit der biomolekularen NMR-Spektroskopie ein neues Fachgebiet an die Fakultät für Chemie und Chemische Biologie. Linser studierte Chemie in Göttingen und Madrid. 2010 promovierte er an der Humboldt-Universität und am Leibniz-Institut für molekulare Pharmakologie in Berlin. Nach einem Jahr an der University of New South Wales (UNSW) in Sydney, Australien, verbrachte er drei Jahre abwechselnd an der Harvard Medical School in Boston, USA, der UNSW Sydney und dem Walter and Eliza Hall Institute in Melbourne, Australien. Ab 2014 war Linser Emmy-Noether-Nachwuchsgruppenleiter am Max-Planck-Institut für biophysikalische Chemie in Göttingen, 2015 wurde er auf eine Professur an der Ludwig-Maximilians-Universität München berufen.

Über RESOLV
Bund und Länder fördern das Exzellenzcluster RESOLV bereits seit 2012. Sprecherhochschulen sind die TU Dortmund und die Ruhr-Universität Bochum. Das Team besteht aus über 200 Wissenschaftlerinnen und Wissenschaftlern. Sie wollen verstehen, wie das Lösungsmittel in die Kontrolle, Vermittlung und Steuerung chemischer Reaktionen involviert ist. Schließlich finden die meisten chemischen Reaktionen, wichtige industrielle Prozesse und nahezu alle biologischen Vorgänge in flüssiger Phase statt.

Wissenschaftliche Ansprechpartner:

Prof. Rasmus Linser
Fakultät für Chemie und Chemische Biologie
Tel.: (0231) 755-3910
E-Mail: rasmus.linser@tu-dortmund.de

Originalpublikation:

https://pubs.acs.org/doi/10.1021/jacs.9b05311

Martin Rothenberg | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.tu-dortmund.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Betazellfunktion im Tiermodell wiederhergestellt: Neue Wirkstoffkombination könnte Diabetes-Remission ermöglichen
21.02.2020 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Darmkrebs: Erhöhte Lebenserwartung dank individueller Therapien
20.02.2020 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics