Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscherteam identifiziert eine neue Klasse von Biokatalysatoren im Abbau mariner Kohlenhydrate

20.02.2018

Enzyme sind von entscheidender Bedeutung beim Abbau von Algen-Biomasse im Meer. Wissenschaftler aus Greifswald und Bremen konnten dies erstmals in umfangreichen Experimenten nachweisen. Sie entdeckten eine völlig neue Unterklasse von Biokatalysatoren im Zuckerabbau in marinen Bakterien. Ihre Ergebnisse stellen Forscher der Universitäten Greifswald und Bremen und des Max-Planck-Instituts für Marine Mikrobiologie (MPIMM) in Bremen in der Fachzeitschrift Nature Chemical Biology (DOI: 10.1038/s41589-018-0005-8) vor.

Im Weltozean speichern Algen jedes Jahr ungefähr die gleiche Menge an Kohlenstoff, wie die gesamte Landvegetation. Algen produzieren dabei große Mengen an Kohlenhydraten, die von Bakterien abgebaut werden und eine wichtige Energiequelle für das gesamte Nahrungsnetz im Meer darstellen.


Abbildung der Alge Delessaria

Foto: Jan-Hendrik Hehemann


Genomanalyse mariner P450-Enzyme

Grafik: Autoren der Studie

In früheren Untersuchungen wurden jene Meeresbakterien identifiziert, die am Abbau dieser Kohlenhydrate beteiligt sind. Wie genau der mikrobielle Abbau vor sich geht, war jedoch bislang unbekannt. Das Forscherteam konnte jetzt erstmalig die spezifische Funktion bestimmter bakterieller Enzyme nachweisen. Diese Enzyme katalysieren mit Hilfe von Sauerstoff einen wichtigen Schritt bei der Verarbeitung der Algen-Kohlenhydrate.

Mit Hilfe modernster bioinformatischer Analysen wurden die Genome von Kohlenhydrat-verwertenden Meeresbakterien untersucht. Diese Analysen deuteten darauf hin, dass oxidative Enzyme namens P450-Monooxygenasen maßgeblich am Abbau der Algen-Kohlenhydrate beteiligt sind. Oxygenasen sind Enzyme, die ein Substrat – im Falle der vorliegenden Untersuchung den Algenzucker – mithilfe von Sauerstoff aufspalten.

Um diese Vermutung zu prüfen, wurde die Funktion dieser Enzyme im Detail charakterisiert. Es zeigte sich, dass die P450-Enzyme einen spezifischen Zuckerrest umsetzen können. Eine umfassende Analyse der P450-Enzyme in Datenbanken bestätigte, dass es sich um eine neue Unterklasse von Biokatalysatoren handelt.

„Diese Enzyme sind für unser Verständnis des Kohlenstoffkreislaufs im Meer sehr wichtig. Sie zeigen uns, wie marine Bakterien mit besonders stabilen Kohlenstoffquellen umgehen, um sie zu verstoffwechseln. Zugleich sind diese Enzyme für die Biotechnologie interessant: Man könnte sie zum Beispiel verwenden, um bestimmte Zucker in Biokraftstoffe umzuwandeln.

Somit unterstreicht diese Studie, wie sehr es sich nicht nur aus biotechnologischer, sondern auch aus ökologischer Sicht lohnt, die molekularen Aspekte des marinen Kohlenhydratkreislaufs im Detail zu untersuchen“, erläutert Dr. Jan-Hendrik Hehemann, Emmy Noether-Gruppenleiter am Max-Planck-Instituts für Marine Mikrobiologie https://www.mpi-bremen.de/Max-Planck-Institut-fuer-Marine-Mikrobiologie-in-Breme... und am Marum – Zentrum für Marine Umweltwissenschaften https://www.marum.de/index.html der Universität Bremen und Korrespondenzautor des Beitrags.

„Diese Ergebnisse zeigen auch, wie wichtig es ist, in einem interdisziplinären Team aus Biologen, Biotechnologen und Biochemikern zu forschen, da diese fächerübergreifende Bündelung wesentlich zum Erfolg des Projektes beigetragen hat“, ergänzt Prof. Dr. Uwe Bornscheuer vom Institut für Biochemie http://biotech.uni-greifswald.de/index.html der Universität Greifswald, der ebenfalls Korrespondenzautor des Beitrags ist.

„Wir freuen uns sehr, dass unsere erste Veröffentlichung im Rahmen der DFG geförderten Forschergruppe POMPU (FOR2406; http://www.pompu-project.de) bahnbrechende und relevante Erkenntnisse zum Abbau mariner Kohlenhydrate enthält“, sagt Prof. Dr. Thomas Schweder vom Institut für Pharmazie https://pharmazie.uni-greifswald.de/institut/abteilungen/pharmazeutische-biotech... der Universität Greifswald. Er ist Sprecher der Forschergruppe.


Weitere Informationen
Link zum Artikel https://www.nature.com/articles/s41589-018-0005-8
Arbeitsgruppe von Prof. Dr. Uwe Bornscheuer http://biotech.uni-greifswald.de/index.html
Arbeitsgruppe von Dr. Jan-Hendrik Hehemann https://www.mpi-bremen.de/MARUM-MPG-Brckengruppe-Marine-Glykobiologie.html
Arbeitsgruppe Prof. Dr. Thomas Schweder https://pharmazie.uni-greifswald.de/institut/abteilungen/pharmazeutische-biotech...

1. Abbildung der Alge Delessaria – Foto: Jan-Hendrik Hehemann
2. Genomanalyse mariner P450-Enzyme – Grafik: Autoren der Studie
Foto und Grafik können für redaktionelle Zwecke im Zusammenhang mit dieser Pressemitteilung kostenlos heruntergeladen und genutzt werden. Dabei ist der Name des Bildautors zu nennen. Download: https://www.uni-greifswald.de/universitaet/information/aktuelles/medienfotos/med...

Ansprechpartner an der Universität Greifswald
Prof. Dr. Uwe Bornscheuer
Biotechnologie und Enzymkatalyse
Institut für Biochemie
Felix-Hausdorff-Straße 4, 17489 Greifswald
Telefon 03834 420 4367
uwe.bornscheuer@uni-greifswald.de

Ansprechpartner am Max-Planck-Institut für Marine Mikrobiologie
Dr. Jan-Hendrik Hehemann
MARUM MPG
Brückengruppe Marine Glykobiologie
Celsiusstraße 1, 28359 Bremen
Telefon 0421 218 65775
jhhehemann@marum.de

Sprecher der Forschergruppe FOR2406
Prof. Dr. Thomas Schweder
Institut für Pharmazie/C_DAT
Pharmazeutische Biotechnologie
Felix-Hausdorff-Straße 3, 17489 Greifswald
Telefon 03834 420 4212
schweder@uni-greifswald.de

Jan Meßerschmidt | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nonstop-Transport von Frachten in Nanomaschinen
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Wie sich ein Kristall in Wasser löst
20.11.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop-Transport von Frachten in Nanomaschinen

Max-Planck-Forscher entdecken die Nanostruktur von molekularen Zügen und den Grund für reibungslosen Transport in den „Antennen der Zelle“

Eine Zelle bewegt sich ständig umher, tastet ihre Umgebung ab und sendet Signale an andere Zellen. Das ist wichtig, damit eine Zelle richtig funktionieren kann.

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: InSight: Touchdown auf dem Mars

Am 26. November landet die NASA-Sonde InSight auf dem Mars. Erstmals wird sie die Stärke und Häufigkeit von Marsbeben messen.

Monatelanger Flug durchs All, flammender Abstieg durch die Reibungshitze der Atmosphäre und sanftes Aufsetzen auf der Oberfläche – siebenmal ist das Kunststück...

Im Focus: Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert

Einem Team von Physikern unter der Leitung von Prof. Dr. Wolf Gero Schmidt, Universität Paderborn, und Prof. Dr. Martin Wolf, Fritz-Haber-Institut Berlin, ist ein entscheidender Durchbruch gelungen: Sie haben weltweit zum ersten Mal und „in Echtzeit“ die Änderung der Elektronenstruktur während einer chemischen Reaktion beobachtet. Mithilfe umfangreicher Computersimulationen haben die Wissenschaftler die Ursachen und Mechanismen der Elektronenumverteilung aufgeklärt und visualisiert. Ihre Ergebnisse wurden nun in der renommierten, interdisziplinären Fachzeitschrift „Science“ veröffentlicht.

„Chemische Reaktionen sind durch die Bildung bzw. den Bruch chemischer Bindungen zwischen Atomen und den damit verbundenen Änderungen atomarer Abstände...

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungen

Internationale Konferenz diskutiert digitale Innovationen für die öffentliche Verwaltung

19.11.2018 | Veranstaltungen

Naturkonstanten als Hauptdarsteller

19.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Für eine neue Generation organischer Leuchtdioden: Uni Bayreuth koordiniert EU-Forschungsnetzwerk

20.11.2018 | Förderungen Preise

Nonstop-Transport von Frachten in Nanomaschinen

20.11.2018 | Biowissenschaften Chemie

Wie sich ein Kristall in Wasser löst

20.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics