Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher finden neuen Produktionsweg pflanzlicher SOS-Signale

02.01.2018

Uni Hohenheim und National Center for Biotechnology in Madrid entdecken bisher unbekannten Weg zur Bildung von Jasmonaten / Publikation in Nature Chemical Biology

Anknabbern verboten: Wenn Schadinsekten über eine Pflanze herfallen, setzt sich diese zur Wehr. Sie bildet Schutz-Substanzen, die für die Insekten giftig sind. Diese Abwehrreaktion wird von Botenstoffen ausgelöst, den Jasmonaten. Und deren Biosynthese gilt seit fast zwei Jahrzehnten als aufgeklärt.


Bildquelle: Universität Hohenheim / Andreas Schaller

Doch nun haben Pflanzenphysiologen der Universität Hohenheim in Stuttgart und des National Center for Biotechnology (CNB-CSIC) in Madrid einen alternativen Syntheseweg für Jasmonate gefunden. Die Pflanzenphysiologie muss daher viele Erklärungen zu Resistenzen und Hormonwirkungen neu durchdenken. Ihre Ergebnisse haben die Forscher im Wissenschaftsjournal Nature Chemical Biology veröffentlicht: http://dx.doi.org/10.1038/nchembio.2540

Sie kontrollieren die Abwehrreaktion der Pflanzen gegen Insekten und andere Schaderreger, und sie steuern zum Beispiel die Entwicklung der Pollen: Jasmonate sind Pflanzenhormone, die in fast allen Pflanzen vorkommen. „Die Frage, wie Jasmonate in der Pflanze gebildet werden, gilt eigentlich als längst aufgeklärt“, berichtet Prof. Dr. Andreas Schaller, Leiter des Fachgebiets Physiologie und Biotechnologie der Pflanzen an der Universität Hohenheim.

In den Jahren 2000 und 2001 hat die Hohenheimer Pflanzenphysiologin Dr. Annick Stintzi den letzten noch fehlenden Schritt des Biosyntheseweges gefunden. Das Forscherteam hat diese Ergebnisse damals in zwei Artikeln im Fachjournal Proceedings of the National Academy of Sciences (PNAS) veröffentlicht. Beide fanden international große Beachtung.

Doch eine Sache bereitete den Wissenschaftlern Kopfzerbrechen: Mit immer empfindlicheren Messtechniken entdeckten sie, dass auch Mutanten ihrer Modell-Pflanze Acker-Schmalwand (Arabidopsis thaliana), die einen Gen-Defekt in dem bekannten Biosyntheseweg haben, Jasmonate bilden können. „Es musste also eine Alternative zum bekannten Syntheseweg geben“, erklärt Prof. Dr. Schaller.

Bypass umgeht bekannten Jasmonat-Syntheseweg

Gemeinsam mit Sally Weiss, Doktorandin an der Universität Hohenheim, und ihrem im Projekt federführenden Kooperationspartner Prof. Dr. Roberto Solano und seinem Team am National Center for Biotechnology (CNB-CSIC) in Madrid machten sie sich auf die Suche nach diesem alternativen Weg – und wurden fündig. „Er stellt sich als eine Art Bypass dar, der das zentrale Enzym im bekannten Syntheseweg umgeht und in parallelen Syntheseschritten ebenfalls zu Jasmonaten führt“, fasst Dr. Stintzi die Erkenntnisse zusammen.

Viele Schlussfolgerungen zu Resistenzen und Hormonwirkungen gingen bisher jedoch von einem einzigen Syntheseweg aus. „Sie muss man nun hinterfragen“, betont Prof. Dr. Schaller. Da man beispielsweise bei der Arabidopsis-Mutante annahm, dass sie keine Jasmonate bilden kann, habe man Wirkungen auf andere Signalmoleküle zurückgeführt. „Jetzt wissen wir, dass doch Jasmonate im Spiel sein können.“

Entdeckung erlaubt neue Schlussfolgerungen

Interessant sind diese Erkenntnisse auch für die Erforschung ursprünglicher Landpflanzen wie den Moosen. „Bisher war unklar, woher in diesen Pflanzen die Jasmonate kommen, denn ihnen fehlt der altbekannte Syntheseweg“, sagt Prof. Dr. Schaller. Jetzt gehen die Experten davon aus, dass niedere Pflanzen wohl nur über den neu entdeckten, höhere dagegen über beide Wege zur Bildung von Jasmonaten verfügen.

Erstmals entdeckt wurden die Botenstoffe im Duft des Jasmins, was ihnen auch den Namen gab. Die flüchtigen Stoffe erreichen auch andere Pflanzen und stellen eine Art SOS-Signal dar: Wird der Jasmin-Busch von Schaderregern befallen, warnt er auf diese Weise die ihn umgebenden Pflanzen. So wird deren Abwehr frühzeitig induziert. „Vor diesem Hintergrund ist durchaus denkbar, Pflanzen mit Jasmonaten zu behandeln und damit ihre Resistenz zu fördern“, zeigt Prof. Dr. Schaller auf.

Aktuelle Publikation

Andrea Chini, Isabel Monte, Angel M Zamarreño, Mats Hamberg, Steve Lassueur, Philippe Reymond, Sally Weiss, Annick Stintzi, Andreas Schaller, Andrea Porzel, José M García-Mina & Roberto Solano (2018): An OPR 3-independent pathway uses 4,5-didehydrojasmonate for jasmonate synthesis, http://dx.doi.org/10.1038/nchembio.2540

Kontakt für Medien
Prof. Dr. Andreas Schaller, Universität Hohenheim, Fachgebiet Physiologie und Biotechnologie der Pflanzen, T 0711 459 22197, E andreas.schaller@uni-hohenheim.de

Zu den Pressemitteilungen der Universität Hohenheim
https://www.uni-hohenheim.de/presse

Text: Elsner

Elsner | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren
16.11.2018 | Universität Bayreuth

nachricht Günstiger Katalysator für das CO2-Recycling
16.11.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics