Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher finden neuen Produktionsweg pflanzlicher SOS-Signale

02.01.2018

Uni Hohenheim und National Center for Biotechnology in Madrid entdecken bisher unbekannten Weg zur Bildung von Jasmonaten / Publikation in Nature Chemical Biology

Anknabbern verboten: Wenn Schadinsekten über eine Pflanze herfallen, setzt sich diese zur Wehr. Sie bildet Schutz-Substanzen, die für die Insekten giftig sind. Diese Abwehrreaktion wird von Botenstoffen ausgelöst, den Jasmonaten. Und deren Biosynthese gilt seit fast zwei Jahrzehnten als aufgeklärt.


Bildquelle: Universität Hohenheim / Andreas Schaller

Doch nun haben Pflanzenphysiologen der Universität Hohenheim in Stuttgart und des National Center for Biotechnology (CNB-CSIC) in Madrid einen alternativen Syntheseweg für Jasmonate gefunden. Die Pflanzenphysiologie muss daher viele Erklärungen zu Resistenzen und Hormonwirkungen neu durchdenken. Ihre Ergebnisse haben die Forscher im Wissenschaftsjournal Nature Chemical Biology veröffentlicht: http://dx.doi.org/10.1038/nchembio.2540

Sie kontrollieren die Abwehrreaktion der Pflanzen gegen Insekten und andere Schaderreger, und sie steuern zum Beispiel die Entwicklung der Pollen: Jasmonate sind Pflanzenhormone, die in fast allen Pflanzen vorkommen. „Die Frage, wie Jasmonate in der Pflanze gebildet werden, gilt eigentlich als längst aufgeklärt“, berichtet Prof. Dr. Andreas Schaller, Leiter des Fachgebiets Physiologie und Biotechnologie der Pflanzen an der Universität Hohenheim.

In den Jahren 2000 und 2001 hat die Hohenheimer Pflanzenphysiologin Dr. Annick Stintzi den letzten noch fehlenden Schritt des Biosyntheseweges gefunden. Das Forscherteam hat diese Ergebnisse damals in zwei Artikeln im Fachjournal Proceedings of the National Academy of Sciences (PNAS) veröffentlicht. Beide fanden international große Beachtung.

Doch eine Sache bereitete den Wissenschaftlern Kopfzerbrechen: Mit immer empfindlicheren Messtechniken entdeckten sie, dass auch Mutanten ihrer Modell-Pflanze Acker-Schmalwand (Arabidopsis thaliana), die einen Gen-Defekt in dem bekannten Biosyntheseweg haben, Jasmonate bilden können. „Es musste also eine Alternative zum bekannten Syntheseweg geben“, erklärt Prof. Dr. Schaller.

Bypass umgeht bekannten Jasmonat-Syntheseweg

Gemeinsam mit Sally Weiss, Doktorandin an der Universität Hohenheim, und ihrem im Projekt federführenden Kooperationspartner Prof. Dr. Roberto Solano und seinem Team am National Center for Biotechnology (CNB-CSIC) in Madrid machten sie sich auf die Suche nach diesem alternativen Weg – und wurden fündig. „Er stellt sich als eine Art Bypass dar, der das zentrale Enzym im bekannten Syntheseweg umgeht und in parallelen Syntheseschritten ebenfalls zu Jasmonaten führt“, fasst Dr. Stintzi die Erkenntnisse zusammen.

Viele Schlussfolgerungen zu Resistenzen und Hormonwirkungen gingen bisher jedoch von einem einzigen Syntheseweg aus. „Sie muss man nun hinterfragen“, betont Prof. Dr. Schaller. Da man beispielsweise bei der Arabidopsis-Mutante annahm, dass sie keine Jasmonate bilden kann, habe man Wirkungen auf andere Signalmoleküle zurückgeführt. „Jetzt wissen wir, dass doch Jasmonate im Spiel sein können.“

Entdeckung erlaubt neue Schlussfolgerungen

Interessant sind diese Erkenntnisse auch für die Erforschung ursprünglicher Landpflanzen wie den Moosen. „Bisher war unklar, woher in diesen Pflanzen die Jasmonate kommen, denn ihnen fehlt der altbekannte Syntheseweg“, sagt Prof. Dr. Schaller. Jetzt gehen die Experten davon aus, dass niedere Pflanzen wohl nur über den neu entdeckten, höhere dagegen über beide Wege zur Bildung von Jasmonaten verfügen.

Erstmals entdeckt wurden die Botenstoffe im Duft des Jasmins, was ihnen auch den Namen gab. Die flüchtigen Stoffe erreichen auch andere Pflanzen und stellen eine Art SOS-Signal dar: Wird der Jasmin-Busch von Schaderregern befallen, warnt er auf diese Weise die ihn umgebenden Pflanzen. So wird deren Abwehr frühzeitig induziert. „Vor diesem Hintergrund ist durchaus denkbar, Pflanzen mit Jasmonaten zu behandeln und damit ihre Resistenz zu fördern“, zeigt Prof. Dr. Schaller auf.

Aktuelle Publikation

Andrea Chini, Isabel Monte, Angel M Zamarreño, Mats Hamberg, Steve Lassueur, Philippe Reymond, Sally Weiss, Annick Stintzi, Andreas Schaller, Andrea Porzel, José M García-Mina & Roberto Solano (2018): An OPR 3-independent pathway uses 4,5-didehydrojasmonate for jasmonate synthesis, http://dx.doi.org/10.1038/nchembio.2540

Kontakt für Medien
Prof. Dr. Andreas Schaller, Universität Hohenheim, Fachgebiet Physiologie und Biotechnologie der Pflanzen, T 0711 459 22197, E andreas.schaller@uni-hohenheim.de

Zu den Pressemitteilungen der Universität Hohenheim
https://www.uni-hohenheim.de/presse

Text: Elsner

Elsner | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Die Definierung des Zentromers – Erforschung der Rolle von Kinetochoren bei der Zellteilung
21.10.2019 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

nachricht Bluteiweiss schützt vor neurologischen Schäden nach Hirnblutung
21.10.2019 | Universität Zürich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburger Forschenden gelingt die erste Synthese eines kationischen Tetraederclusters in Lösung

Hauptgruppenatome kommen oft in kleinen Clustern vor, die neutral, negativ oder positiv geladen sein können. Das bekannteste neutrale sogenannte Tetraedercluster ist der weiße Phosphor (P4), aber darüber hinaus sind weitere Tetraeder als Substanz isolierbar. Es handelt sich um Moleküle aus vier Atomen, deren räumliche Anordnung einem Tetraeder aus gleichseitigen Dreiecken entspricht. Bisher waren neben mindestens sechs neutralen Versionen wie As4 oder AsP3 eine Vielzahl von negativ geladenen Tetraedern wie In2Sb22– bekannt, jedoch keine kationischen, also positiv geladenen Varianten.

Ein Team um Prof. Dr. Ingo Krossing vom Institut für Anorganische und Analytische Chemie der Universität Freiburg ist es gelungen, diese positiv geladenen...

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitales-Krankenhaus – wo bleibt der Mensch?

21.10.2019 | Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Digitales-Krankenhaus – wo bleibt der Mensch?

21.10.2019 | Veranstaltungsnachrichten

Das Stromnetz fit für E-Mobilität machen

21.10.2019 | Förderungen Preise

Kompakt, effizient, robust und zuverlässig: FBH-Entwicklungen für den Weltraum

21.10.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics