Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher entschlüsseln Funktionsweise von potentiellem Wirkstoff gegen Alzheimer

20.02.2013
Der Wirkstoff Methylenblau gilt als Kandidat für die Behandlung von Alzheimer, denn er verhindert schädliche Verklumpungen sogenannter Tau-Proteine, die für diese Erkrankung typisch sind. Doch warum Methylenblau diese Wirkung hat, war bislang unbekannt.

Wissenschaftler aus Göttingen und Bonn haben nun den Mechanismus aufgeklärt, woraus sich Strategien für eine Entwicklung möglicher Medikamente ableiten lassen. Wie das Forscherteam um Markus Zweckstetter und Eckhard Mandelkow im Fachmagazin „Angewandte Chemie“ berichtet, inaktiviert Methylenblau jene Molekülgruppen, die eine Bindung zwischen den Tau-Proteinen vermitteln.

Methylenblau ist ein Multitalent mit langer Geschichte. Die Substanz ist synthetisch, wurde 1876 erstmals hergestellt und diente seither nicht nur als blaues Färbemittel. Sie wurde auch schon für medizinische Zwecke verwendet – etwa zur Behandlung von Malaria und zur Vorbeugung von Harnwegsinfekten. Inzwischen ist sie auch als Mittel gegen Alzheimer im Gespräch.

Methylenblau wirkt in vielfacher Weise. Im Zusammenhang mit Alzheimer ist besonders bemerkenswert, dass es die Verklumpung von „Tau-Proteinen“ verhindert. Derlei Ablagerungen sind typisch für diverse Demenz-Erkrankungen: Die Protein-Klumpen reichern sich in den Hirnzellen an, stören deren Funktion und können zum Tod der Zellen führen.

„Eigentlich sind Tau-Proteine enorm wichtig, da sie die Verkehrswege innerhalb der Nervenzelle stabilisieren“, erläutert Prof. Eckhard Mandelkow, der in Bonn am Deutschen Zentrum für Neurogenerative Erkrankungen (DZNE) und am Forschungszentrum caesar tätig ist. „Bei Alzheimer allerdings versagen diese Proteine ihren Dienst. Das Verkehrssystem der Zelle bricht zusammen und Versorgungsgüter, die für die Zelle lebensnotwendig sind, gelangen nicht mehr ans Ziel. Außerdem binden die Tau-Proteine aneinander. Diese Aggregate sind ebenfalls schädlich und ein entscheidendes Merkmal der Krankheit.“

Solche Szenarien lassen sich in Tierstudien nachstellen. Bereits vor einiger Zeit hat ein anderes Forscherteam unter der Leitung von Dr. Eva-Maria Mandelkow nachgewiesen, dass Methylenblau die Krankheitssymptome bei Mäusen und Fadenwürmern lindern kann. Doch aussagekräftige Studien mit Patienten gibt es bislang nicht. Außerdem war die Funktionsweise von Methylenblau bisher unklar. „Methylenblau hemmt die Aggregation“, unterstreicht Eckhard Mandelkow. „Aber der Mechanismus dahinter war bislang unbekannt.“

Einblicke in die molekularen Ursachen gibt die Studie, die nun in der Zeitschrift „Angewandte Chemie“ erschienen ist: Die Forschungsgruppe von Markus Zweckstetter am DZNE-Standort Göttingen und dem Max-Planck-Institut für biophysikalische Chemie in Göttingen konnte gemeinsam mit dem Team von Eckhard Mandelkow nachweisen, dass Methylenblau Molekülgruppen inaktiviert, die eine Bindung zwischen den Tau-Proteinen vermitteln. Überdies fanden die Forscher Hinweise dafür, dass der Wirkstoff die Proteine wie ein Abstandshalter auf Distanz hält. Diese Erkenntnisse könnten in die Herstellung modifizierter Formen von Methylenblau und die Entwicklung von Therapien einfließen.

Hintergrund:

Methylenblau reagiert mit Schwefelgruppen

Von zentraler Bedeutung für die aktuelle Studie war die NMR-Spektroskopie, ein leistungsstarkes Verfahren zur Untersuchung von Biomolekülen. „Wir haben festgestellt, dass Methylenblau mit bestimmten Bausteinen des Tau-Proteins reagiert, nämlich mit den Cysteinen“, erläutert Prof. Zweckstetter die Ergebnisse.

Diese Reaktion ist sehr wirkungsvoll. Methylenblau modifiziert die Tau-Proteine nur an entscheidender Stelle: Von den bis zu 441 Bausteinen, aus denen ein Tau-Protein bestehen kann, werden speziell die sogenannten „Cystein“-Proteinbausteine verändert. Direkt betroffen sind die SH-Gruppen, Anhängsel aus Schwefel und Wasserstoff, die für Cysteine typisch sind. Hier klinken sich nun Sauerstoffatome ein.

„Durch diese chemische Veränderung können sich die Tau-Proteine nicht mehr miteinander verknüpfen“, so Zweckstetter. „Dies geschieht sonst, indem SH-Gruppen von verschiedenen Proteinen miteinander reagieren und eine sogenannte Disulfidbrücke bilden. Das ist nun nicht mehr möglich. Denn durch die Reaktion mit Methylenblau fallen die SH-Gruppen weg.“

In einem gesunden Organismus wird die Bildung solcher Disulfidbrücken natürlicherweise unterdrückt. „Mit Hilfe von Antioxidantien versucht die Zelle, schädliche Reaktionen zu verhindern“, sagt Eckhard Mandelkow. „Aber mit dem Alter und auch bei neurodegenerativen Erkrankungen wie Alzheimer lässt dieses Schutzsystem nach, was die Aggregation der Tau-Proteine begünstigt.“

Faltblätter ebenfalls bedeutsam

Für die Zusammenballung der Proteine sei neben den Disulfidbrücken aber noch ein weiterer Mechanismus wichtig, betont Zweckstetter: „Das Tau-Protein aggregiert dann besonders schnell, wenn sich Disulfidbrücken ausbilden. Diese wirken wie eine Initialzündung. Ohne diese Bindung kann das Tau-Protein aber auch aggregieren. Wenn auch viel langsamer.“

Die Ursache dafür liegt in der Gestalt des Moleküls, dessen Rückgrat an mancher Stelle gefalzt werden kann wie eine Ziehharmonika. Solche Regionen können sich zu „Beta-Faltblättern“ aufstapeln, wenn zwei Tau-Proteine dicht genug und mit der passenden Orientierung aneinander geraten. „Dieses Phänomen ist seit langem bekannt“, sagt Zweckstetter. „Auch darauf wirkt Methylenblau.“ Demnach scheinen Methylenblau und insbesondere seine Derivate „Azure A“ und „Azure B“, die unter physiologischen Bedingungen bevorzugt vorliegen, die Aggregation über die Beta-Faltblätter zu unterdrücken. „Hier kommt es zu einer sterischen Hinderung“, meint Zweckstetter. „Wenn sich der Wirkstoff an eine Faltblatt-Region des Tau-Proteins anlagert, dann kann kein weiteres Faltblatt andocken.“

Neben Methylenblau gibt es noch andere Substanzen, die die Aggregation des Tau-Proteins behindern. Manche davon richten sich explizit gegen das Aneinanderheften der Faltblatt-Strukturen. Eine effektive Therapie könne letztlich eine Kombination verschiedener Wirkstoffe erfordern, schätzen die Forscher: „Eine Schlussfolgerung unserer Studie ist sicherlich, dass es verschiedene Wege gibt, um die pathogene Aggregation des Tau-Proteins zu stören.“

Originalveröffentlichung
„Mechanistic Basis of Phenothiazine-driven Inhibition of Tau Aggregation“, Elias Akoury, Marcus Pickhardt, Michal Gajda, Jacek Biernat, Eckhard Mandelkow, Markus Zweckstetter, Angewandte Chemie, DOI: 10.1002/anie.201208290

http://onlinelibrary.wiley.com/doi/10.1002/anie.201208290/abstract

Das Deutsche Zentrum für Neurodegenerative Erkrankungen (DZNE) erforscht die Ursachen von Erkrankungen des Nervensystems und entwickelt Strategien zur Prävention, Therapie und Pflege. Es ist eine Einrichtung in der Helmholtz-Gemeinschaft Deutscher Forschungszentren mit Standorten in Berlin, Bonn, Dresden, Göttingen, Magdeburg, München, Rostock/Greifswald, Tübingen und Witten. Das DZNE kooperiert eng mit Universitäten, deren Kliniken und außeruniversitären Einrichtungen.

Dr. Marcus Neitzert | idw
Weitere Informationen:
http://www.dzne.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Biomarker besser nachweisen: Bremer Forscher entwickeln neue Methode mit Mikrokapseln
14.08.2018 | Jacobs University Bremen gGmbH

nachricht Grönland: Tiefe des Schmelzwassereintrags beeinflusst Planktonblüte
14.08.2018 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Helfer bei der Zellreinigung

14.08.2018 | Biowissenschaften Chemie

Neue Oberflächeneigenschaften für holzbasierte Werkstoffe

14.08.2018 | Materialwissenschaften

Fraunhofer IPT unterstützt Zweitplatzierten bei SpaceX-Wettbewerb

14.08.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics