Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher entdecken Feenkreise in Australien

15.03.2016

Die kreisrunden, kahlen Stellen, die in einem sehr regelmäßigen Muster das trockene Grasland Namibias überziehen, galten bisher als weltweit einmalig. Sind sie aber nicht, zeigt eine neue Studie im Fachjournal PNAS: Gemeinsam mit israelischen und australischen Kollegen haben Wissenschaftler vom Helmholtz-Zentrum für Umweltforschung (UFZ) in Leipzig die rätselhaften Strukturen nun auch im menschenleeren Outback Australiens entdeckt. Die dortigen Untersuchungen liefern auch neue Indizien dafür, dass solche Feenkreise bei Wassermangel durch eine Selbstorganisation der Pflanzen entstehen.

Aufmerksam geworden sind die Forscher auf das Naturphänomen in Australien durch das Foto einer australischen Kollegin in Newman. Diese hatte ihnen ein Luftbild aus der Umgebung der Stadt geschickt. Darauf waren Pflanzenformationen zu sehen, die den Feenkreisen, die sonst nur im südlichen Afrika zu finden sind, sehr ähnlich schienen.


Ein großer Feenkreis mit einer harten Bodenschicht, die das Pflanzenwachstum verhindert. Australische Feenkreise haben im Schnitt Durchmesser von 4 Metern, einige können auch größer als 7 Meter sein.

Dr. Stephan Getzin


Aus der Vogelperspektive wird ersichtlich, dass sich die Feenkreise homogen über die Landschaft verteilen.

Kevin Sanders

In der Fachwelt gibt es verschiedene Theorien darüber, wie diese kahlen, von Gras gesäumten Kreise entstehen: Einige Forscher haben dabei vor allem Termiten oder Ameisen in Verdacht. Diese Insekten sollen der Theorie zufolge an den Wurzeln der Gräser knabbern und sie dadurch zum Absterben bringen.

Andere Wissenschaftler vermuten dagegen, dass unter den Kreisen Kohlenmonoxid als giftiges Gas aus dem Erdinneren aufsteigt und die Vegetation abtötet. Und eine dritte Fraktion geht davon aus, dass die kahlen Stellen unter bestimmten Bedingungen ganz von selbst entstehen. Am Übergang zwischen Wüste und Grasland reicht das Wasserangebot demnach nicht für eine geschlossene Vegetationsdecke aus. Also konkurrieren die einzelnen Gewächse um die kostbare Flüssigkeit und bilden dabei durch Selbstorganisation den charakteristischen, löchrigen Grasteppich.

Feenkreis-Experte Dr. Stephan Getzin vom UFZ favorisiert seit Jahren die dritte Theorie. Vor allem Luftbilder von den entsprechenden Landschaften haben ihn davon überzeugt. Darauf hat er in früheren Studien die genaue Lage der kahlen Stellen analysiert.

„Das Besondere an Feenkreisen ist, dass sie sich auch über größere Gebiete erstaunlich regelmäßig und homogen verteilen, aber nur innerhalb eines engen Niederschlagsbereichs“, erläutert der Forscher. Ein solches Muster, das an die sechseckige Struktur von Bienenwaben erinnert, kann seiner Ansicht nach am ehesten durch die Konkurrenz um Wasser entstehen. Diese Einschätzung haben er und seine Co-Autoren Hezi Yizhaq und Ehud Meron von der Ben-Gurion-Universität des Negev in Israel auch mit Computer-Simulationen bestätigt.

„Lange hatten Ökologen die Selbstorganisation von Pflanzen in Trockengebieten nicht so recht wahrgenommen, da die theoretischen Grundlagen für diese Prozesse ursprünglich in der Physik zu finden sind“, sagt Stephan Getzin und verweist auf die langwierigen Vorarbeiten seiner beiden israelischen Kollegen. „Inzwischen aber wird immer klarer, wie wichtig dieser Prozess ist.“

Trotzdem sind etliche Kollegen skeptisch geblieben. Wenn ein solcher Mechanismus dahinterstecke, müsse es ähnliche Strukturen auch in anderen Trockengebieten der Erde geben, laute ein gängiger Einwand. Schließlich sei das Grasland Namibias keineswegs die einzige Region, in der Pflanzen um Wasser konkurrieren. Und tatsächlich ist bekannt, dass Trockenheit auch anderenorts interessante Vegetationsmuster schafft. Nirgends aber schienen sich kahle Flecken in einer so regelmäßigen Sechseck-Struktur anzuordnen wie in Namibia.

Umso elektrisierter war Stephan Getzin von dem Luftbild, das er 2014 aus Australien geschickt bekam. Um das Phänomen genauer zu untersuchen, reiste Getzin gemeinsam mit seinem israelischen Kollegen Hezi Yizhaq nach Australien. In vier Gebieten der kaum besiedelten Region haben die Wissenschaftler die kahlen Kreise vermessen, ihre Oberflächen-Temperaturen mit denen von bewachsenen Bereichen verglichen und die Spuren von Ameisen und Termiten kartiert.

Sie haben beobachtet, wie an diesen Stellen das Wasser versickert und Bodenproben genommen, um sie später im Labor zu analysieren. Das alles haben sie mit Luftbild-Auswertungen, statistischen Analysen der Landschaftsmuster und Computersimulationen ergänzt. Seitdem sind sie sicher, dass es sich tatsächlich um echte Feenkreise handelt, die das gleiche Muster bilden wie ihre 10.000 Kilometer entfernten Pendants in Namibia.

Auch für ihre Theorie zur Entstehung der kahlen Flecken haben die Forscher neue Bestätigung gefunden. Wo in Namibia in oder an den Feenkreisen meist zwei bis drei Termiten- oder Ameisenarten herumkrabbeln und Raum für Spekulation eröffnen, ist die Situation in Australien eindeutiger. „Dort haben wir in den Kreisen überwiegend keine Nester von ihnen gefunden und verborgene Sandtermiten wie in Namibia gibt es nicht in Australien“, berichtet Stephan Getzin. „Und die vorhandenen Nester haben ein komplett anderes Verteilungsmuster als die Feenkreise.“

Für ihn sei das ein deutlicher Hinweis darauf, dass die kahlen Flecken nicht durch tierische Aktivitäten, sondern durch die Selbstorganisation der Pflanzen entstehen. Dafür spreche auch, dass die in der Region dominierenden Gräser der Gattung Triodia in unmittelbarer Nachbarschaft zu den Feenkreisen auch noch andere typische Trockenheitsmuster wie Streifen, Labyrinthe oder von kahlem Boden umgebene Einzelpflanzen bilden. Insbesondere die Streifen- und Labyrinthmuster bilden sich bevorzugt auf harten Bodenoberflächen mit oberirdischem Wasserabfluss und sind vor allem bekannt von Gehölzen an Berghängen.

Nach ihren Untersuchungen vor Ort haben die Forscher auch eine Vorstellung davon, wie das Wechselspiel zwischen Boden und Vegetation in dieser Region funktioniert. Wo keine Vegetation den australischen Lehmboden schützt, wird seine Oberfläche nicht nur extrem heiß. Sie verbackt auch zu einer harten Kruste, in der kaum Wasser versickern kann. Das Wasser der wenigen Regenfälle fließt dort oberirdisch ab. Das aber sind extrem schlechte Bedingungen für keimende Pflanzen – die unbewachsenen Bereiche bleiben weiter kahl.

Anders ist die Lage an Stellen, auf denen bereits erste Gräser gedeihen. Die Pflanzen sorgen dort für eine kühlere Oberfläche und einen lockereren Boden, in dem die Niederschläge besser versickern. Daher können sich lokal weitere Pflanzen ansiedeln und die Bedingungen wieder ein wenig verbessern – ein selbstverstärkender, kleinskaliger Prozess, der auf großer Landschaftsskala zu dem beobachteten Grasteppich mit Lückenmuster führt.

„In Namibia ist der sandige Boden der Feenkreise dagegen viel durchlässiger, so dass die Niederschläge problemlos versickern können“, sagt Stephan Getzin. Daher bilden sich dort unter den kahlen Flecken Wasserreservoirs, die das umliegende Gras über Diffusionsprozesse im Boden mit Feuchtigkeit versorgen. „Das ist im Detail zwar ein anderer Mechanismus als in Australien“, erläutert er. „Er führt aber zum gleichen Vegetationsmuster, da beide Lückensysteme von der gleichen Instabilität ausgelöst werden“.

Der UFZ-Mitarbeiter will dem Phänomen nun weiter nachgehen. Er hält es durchaus für wahrscheinlich, dass es auch noch in anderen trockenen und dünn besiedelten Regionen der Erde bisher unbekannte Feenkreise gibt. Die Zeit für Entdeckungen ist wohl noch nicht vorbei.

Publikation:
Stephan Getzin, Hezi Yizhaq, Bronwyn Bell, Todd E. Erickson, Anthony C. Postle, Itzhak Katra, Omer Tzuk, Yuval R. Zelnik, Kerstin Wiegand, Thorsten Wiegand, Ehud Meron: Discovery of fairy circles in Australia supports self-organization theory. PNAS http://dx.doi.org/10.1073/pnas.1522130113

Weitere Informationen:
Dr. Stephan Getzin
UFZ-Department Ökosystemanalyse
Phone: ++49 341 235 1719
http://www.ufz.de/index.php?en=36 656
stephan.getzin@ufz.de

Weitere Informationen:

http://www.ufz.de/index.php?de=36336&webc_pm=11/2016

Susanne Hufe | Helmholtz-Zentrum für Umweltforschung - UFZ

Weitere Berichte zu: Flecken Gräser Helmholtz-Zentrum Namibia Termiten UFZ Umweltforschung Vegetation

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 3D-Landkarten der Genaktivität
20.11.2019 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Einblick in die dunkle Materie des Genoms
20.11.2019 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist. Mit „Super-resolution Microscopy“, entwickelt seit den 80er Jahren, kann man diese Einschränkung jedoch umgehen, indem fluoreszierende Materialien eingesetzt werden. Wissenschaftlerinnen und Wissenschaftler am Max-Planck-Institut für Polymerforschung haben nun entdeckt, dass aus Graphen bestehende Nano-Moleküle genutzt werden können, um diese Mikroskopie-Technik zu verbessern. Diese Nano-Moleküle bieten eine Reihe essentieller Vorteile gegenüber den bisher verwendeten Materialien, die die Mikroskopie-Technik noch vielfältiger einsetzbar machen.

Mikroskopie ist eine wichtige Untersuchungsmethode in der Physik, Biologie, Medizin und vielen anderen Wissenschaften. Sie hat jedoch einen Nachteil: Ihre...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Mit künstlicher Intelligenz zum besseren Holzprodukt

Der Empa-Wissenschaftler Mark Schubert und sein Team nutzen die vielfältigen Möglichkeiten des maschinellen Lernens für holztechnische Anwendungen. Zusammen mit Swiss Wood Solutions entwickelt Schubert eine digitale Holzauswahl- und Verarbeitungsstrategie unter Verwendung künstlicher Intelligenz.

Holz ist ein Naturprodukt und ein Leichtbauwerkstoff mit exzellenten physikalischen Eigenschaften und daher ein ausgezeichnetes Konstruktionsmaterial – etwa...

Im Focus: Eine Fernsteuerung für alles Kleine

Atome, Moleküle oder sogar lebende Zellen lassen sich mit Lichtstrahlen manipulieren. An der TU Wien entwickelte man eine Methode, die solche „optischen Pinzetten“ revolutionieren soll.

Sie erinnern ein bisschen an den „Traktorstrahl“ aus Star Trek: Spezielle Lichtstrahlen werden heute dafür verwendet, Moleküle oder kleine biologische Partikel...

Im Focus: Atome hüpfen nicht gerne Seil

Nanooptische Fallen sind ein vielversprechender Baustein für Quantentechnologien. Forscher aus Österreich und Deutschland haben nun ein wichtiges Hindernis für deren praktischen Einsatz aus dem Weg geräumt. Sie konnten zeigen, dass eine besondere Form von mechanischen Vibrationen gefangene Teilchen in kürzester Zeit aufheizt und aus der Falle stößt.

Mit der Kontrolle einzelner Atome können Quanteneigenschaften erforscht und für technologische Anwendungen nutzbar gemacht werden. Seit rund zehn Jahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

20.11.2019 | Materialwissenschaften

Eisberge als Nährstoffquelle - Führt der Klimawandel zu mehr Eisendüngung im Ozean?

20.11.2019 | Geowissenschaften

Gehen verändert das Sehen

20.11.2019 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics