Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher decken im großen Maßstab krankheitsrelevante Gene auf

28.07.2015

Trotz umfangreicher Forschung in den letzten Jahren ist die Funktion einer Vielzahl von Säugetier-Genen und deren Rolle für Gesundheit und Krankheit nach wie vor unklar. In einer bislang einzigartigen Studie haben Forscher des Helmholtz Zentrums München zusammen mit Kollegen aus dem europäischen Konsortium EUMODIC nun die Daten von genetisch unterschiedlichen Mauslinien ausgewertet, um neue krankheitsrelevante Bezüge zu entdecken. Die Ergebnisse wurden kürzlich in der Zeitschrift ‚Nature Genetics‘ veröffentlicht.

Prof. Dr. Martin Hrabě de Angelis, Leiter des Instituts für Experimentelle Genetik (IEG) am Helmholtz Zentrum München, und seine Kollegen etablierten dafür standardisierte Untersuchungen an krankheitsrelevanten Organsystemen. Eine derart umfassende und vergleichbare Analyse gab es bislang noch nie. Darüber hinaus entwickelten sie mit ihren Kollegen von der Oxford University spezielle statistische Verfahren, die Ihnen erlauben, signifikante Aussagen über die entsprechende Funktion der Gene zu treffen.


Prof. Dr. Martin Hrabě de Angelis; Quelle: HMGU

„Insgesamt konnten wir so 320 verschiedene Gene untersuchen“, sagt Erstautor Martin Hrabě de Angelis, der die Idee des Mausklinik-Konzepts entworfen hat. Eine Reihe von krankheitsrelevanten Genen wurde in den Tiermodellen charakterisiert, die damit in Zukunft einen Beitrag zu neuen Forschungsansätzen leisten können.

Neue Ansatzpunkte für Stoffwechselkrankheiten

Das Team konnte 160 unbekannten Genen Funktionen zuordnen, u.a. in den Bereichen Stoffwechselprozesse und Neurologie, die nun Hinweise auf ihre Gesundheitsrelevanz geben. Damit wären sie hoffnungsvolle Kandidaten für neue Forschungsansätze beispielsweise bei Stoffwechselerkrankungen wie Diabetes oder Adipositas. Eines dieser Gene ist etwa Elmod1, dessen Aufgabe bislang vollkommen unverstanden war. Die Studie konnte nun zeigen, dass es offenbar in die Fettaufnahme im Blut (Cholesterol) involviert ist und zudem das Körpergewicht reguliert.

Riesiger neuer Datensatz für die wissenschaftliche Gemeinschaft

„Unsere Untersuchungen haben darüber hinaus für viele Gene weitere, bislang noch unbekannte Funktionen herausgefunden“ berichtet Hrabě de Angelis. Er und sein Team wollen diesen Weg künftig noch fortführen:

„Unsere Erkenntnisse zu den untersuchten Genen stehen der wissenschaftlichen Gemeinschaft nun als valider Datensatz kostenfrei über die Webseite des IMPC (International Mouse Phenotyping Consortium) zur Verfügung und bilden eine sehr gute Basis, auf der wir und andere Forschungsgruppen neue Hypothesen aufstellen und überprüfen können.“ Das IMPC führt diese Projekte weiter fort, um für möglichst alle Gene des Genoms deren Funktionen zu entdecken.


Weitere Informationen

Hintergrund:
* Der Begriff Phänotyp steht für die Merkmale eines Organismus. Das umfasst nicht nur morphologische, sondern auch auf physiologische Eigenschaften und Verhaltensmerkmale.

Original-Publikation:
Hrabě de Angelis, M. et al. (2015). Deciphering mammalian gene function through broad based phenotypic screens across a consortium of mouse clinics, Nature Genetics, DOI: 10.1038/ng.3360

Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.300 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 37.000 Beschäftigten angehören.

Ziel der Forschung des Instituts für Experimentelle Genetik (IEG) ist, Ursachen und Entstehung menschlicher Erkrankungen zu verstehen. Durch seine leitende Funktion in interdisziplinären und internationalen Konsortien hat das IEG eine weltweit führende Position in der systemischen Untersuchung von Mausmodellen für Krankheiten des Menschen und der Aufklärung von beteiligten Genen. Schwerpunkt bilden dabei Stoffwechselerkrankungen wie Diabetes. Das IEG ist Gründer der Deutschen Mausklinik (GMC) und leitet das Europäische Maus Mutanten Archiv (EMMA). Zudem koordiniert das IEG die europäische Forschungsinfrastruktur Infrafrontier (ESFRI). Das IEG ist Teil des Helmholtz Diabetes Center (HDC). Dem IEG gehört die Abteilung Genomanalysezentrum (GAC) an, die die Entwicklung komplexer Krankheiten und den Umwelteinfluss bei ihrer Entstehung untersucht.

Durch eine steigende Lebenserwartung nehmen sowohl altersbedingte, als auch soziologische und umweltbedingte Einflüsse auf die Gene zu. Diese Veränderungen des genetischen Materials untersucht das Institut für Entwicklungsgenetik (IDG). Im Forschungsbereich Mouse Genetics werden genetische Tiermodelle zur Erforschung verschiedener Erkrankungen entwickelt. Diese Modelle werden im Disease Modelling analysiert um Genfunktionen und Zellprozesse zu identifizieren und den Einfluss von Umwelt und Alterungsprozessen zu bewerten. Ein Schwerpunkt liegt dabei in der Untersuchung neurologischer und psychiatrischer Krankheiten.

Das Institut für Pathologie (PATH) untersucht mikroskopische und molekulare Gewebestrukturen, die an der Entstehung und Progression von Erkrankungen beteiligt sind. Die Identifizierung und Charakterisierung molekularer Mechanismen und Signalwege bieten die Grundlage, um das Zusammenspiel von Genen und Umwelt besser zu verstehen und Ansatzpunkte für neue therapeutische Interventionen zu entdecken. PATH arbeitet eng mit dem Institut für Allgemeine Pathologie und Pathologische Anatomie der Technischen Universität München zusammen, wodurch sowohl Grundlagenforschung als auch angewandte klinische Studien ermöglicht werden.

Das Institut für Lungenbiologie (iLBD) gehört dem Comprehensive Pneumoloy Center (CPC) an, einem Zusammenschluss des Helmholtz Zentrums München mit dem Universitätsklinikum der Ludwig-Maximilians-Universität München und den Asklepios Fachkliniken München-Gauting. Ziel des CPC ist die Erforschung chronischer Lungenerkrankungen, um neue diagnostische und therapeutische Strategien zu entwickeln. Das iLBD führt mit der Untersuchung zellulärer, molekularer und immunologischer Mechanismen von Lungenerkrankungen den Schwerpunkt der experimentellen Pneumologie an. Das CPC ist ein Standort des Deutschen Zentrums für Lungenforschung (DZL).

Ansprechpartner für die Medien:
Abteilung Kommunikation, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-Mail: presse@helmholtz-muenchen.de

Fachlicher Ansprechpartner:
Prof. Dr. Martin Hrabě de Angelis, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institut für Experimentelle Genetik, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 3502 - E-Mail: hrabe@helmholtz-muenchen.de

Weitere Informationen:

http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.3360.html - Link zur Publikation
http://www.helmholtz-muenchen.de/aktuelles/pressemitteilungen/2015/index.html - Pressemitteilungen Helmholtz Zentrum München
http://www.helmholtz-muenchen.de/en/ieg/index.html - Institut für experimentelle Genetik

Kommunikation | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Tuberkulose: Neue Einblicke in den Erreger
10.10.2019 | Julius-Maximilians-Universität Würzburg

nachricht Nanostrukturen helfen, die Haftung von Krankenhauskeimen zu reduzieren
10.10.2019 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Wenn die Erde flüssig wäre

Eine heisse, geschmolzene Erde wäre etwa 5% grösser als ihr festes Gegenstück. Zu diesem Ergebnis kommt eine Studie unter der Leitung von Forschenden der Universität Bern. Der Unterschied zwischen geschmolzenen und festen Gesteinsplaneten ist wichtig bei die Suche nach erdähnlichen Welten jenseits unseres Sonnensystems und für das Verständnis unserer eigenen Erde.

Gesteinsplaneten so gross wie die Erde sind für kosmische Massstäbe klein. Deshalb ist es ungemein schwierig, sie mit Teleskopen zu entdecken und zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

Zukunft Bau Kongress 2019 „JETZT! Bauen im Wandel“

10.10.2019 | Veranstaltungen

Aktuelle Trends an den Finanzmärkten im Schnelldurchlauf

09.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fraunhofer IZM setzt das E-Auto auf die Überholspur

11.10.2019 | Energie und Elektrotechnik

IVAM-Produktmarkt auf der COMPAMED 2019: Keine Digitalisierung in der Medizintechnik ohne Mikrotechnologien

11.10.2019 | Messenachrichten

Kryptografie für das Auto der Zukunft

11.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics