Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Flippiger Lipid-Transport

13.08.2015

Einem Team von Forschern der ETH Zürich und der Universität Bern ist es gelungen, die Struktur eines speziellen Transport-Enzyms, einer Flippase des Bakteriums Campylobacter jejuni, aufzuklären. Die Struktur lieferte ihnen darüber hinaus eine Erklärung dafür, wie Flippasen bestimmte Lipide auf den Kopf stellen können.

Membranen spielen in der Biologie eine überaus wichtige Rolle: Sie trennen das Zellinnere vom extrazellulären Aussenraum ab, sie geben Zellen Form und Grösse. Und nicht zuletzt laufen an Oberflächen von Membranen unzählige lebenswichtige Prozesse und der Stoffaustausch ab.


Die Flippase PlgK bildet einen Tunnel (grün), in den es den hydrophilen Kopfteil (rot-grau) eines Lipid-gebundenen Oligosaccharids für dessen Umorientierung in der Membran aufnehmen kann. (Illustration: aus Perez et al, 2015)

Gebildet werden Membranen in der Regel durch eine Doppelschicht von Lipiden. Lipide haben einen «wasserliebenden» (hydrophilen) Kopf, an welchen zwei lange, wasserabstossende (hydrophobe) Kohlenwasserstoffketten gebunden sind. Bei einer Doppellipidschicht liegen die hydrophilen Köpfe der Lipide aussen, die hydrophoben Ketten sind einander zugewandt. In die Membran eingebettet sind zahlreiche weitere Bestandteile wie Poren bildende Proteine oder Transport-Enzyme.

Lipid-Transport essenziell

Der Transport von Phospholipiden sowie von Lipid-gebundenen Oligosacchariden (Lipid-linked Oligosaccharide, LLO) ist aufgrund der bipolaren Natur der Doppelmembran – hydrophobes Inneres, hydrophile Aussenhaut - energieabhängig und nur schwierig zu bewerkstelligen. Hier kommen sogenannte Flippasen zum Einsatz. Das sind Transportproteine, die über einen besonderen Flipp-Mechanismus Lipide von der einen auf die andere Seite der Membran bringen. Flippasen haben eine wichtige Rolle beim Aufrechterhalten der Asymmetrie von zellulären Membranen, also in der unterschiedlichen Lipid-Zusammensetzung der Innen- und Aussenseite.

Die asymmetrische Verteilung von Lipiden beeinflusst bei Säugern etwa die Blutgerinnung, die Immunerkennung oder den programmierten Zelltod, die Apoptose. Wissenschaftler vermuten, dass eine aus den Fugen geratene Lipid-Asymmetrie mit neurodegenerativen Krankheiten wie dem Alzheimer-Syndrom in Verbindung stehen könnte. Zudem spielen Flippasen eine essentielle Rolle im Transport von Lipid-gebundenen Oligosacchariden, die bei der Glykosylierung auf Proteine übertragen werden.

Flippase-Struktur erstmals aufgeklärt

Bislang kannten Biologen weder die genaue Struktur von Flippasen noch deren Mechanismus, wie sie die LLO umorientieren. Nun zeigt eine Forschungsgruppe von Wissenschaftlern der ETH Zürich und der Universität Bern, unter der Leitung von ETH-Professor Kaspar Locher, wie eine dieser Flippasen, die bakterielle «PglK», aufgebaut ist und wie sie funktioniert. PglK sitzt in der Membran des Bakteriums Campylobacter jejuni, einem Krankheitserreger des Menschen.

Um die molekulare Struktur von PglK zu bestimmten, isolierten die Forschenden diese Flippase aus Bakterienmembranen und «froren» die gefundenen Moleküle ein, indem sie diese kristallisierten. Die Kristalle wurden danach mittels Röntgenspektroskopie untersucht und die Positionen der Atome, aus welchen die Flippase besteht, mit hoher Auflösung bestimmt. So erhielten die Wissenschaftlerinnen und Wissenschaftler von drei verschiedenen Stadien dieses beweglichen Moleküls die räumliche Anordnung. Die Kenntnis der Stadien ermöglichte es ihnen schliesslich auch, einen molekularen Mechanismus abzuleiten, wie PglK LLOs umlagert.

So zeigen die Forschenden in ihrer Arbeit, die eben in der Fachzeitschrift Nature veröffentlicht wurde, dass PglK aus zwei identischen Untereinheiten besteht, die sich unter Energiezufuhr wie eine Schere bewegen. Der hydrophile Zuckerteil des Lipid-gebundenen Oligosaccharids wird dann wie einem Kreditkartenlesegerät durch einen ebenfalls hydrophilen Kanal von PglK gezogen. Der hydrophobe Lipid-Teil des Moleküls hingegen bleibt im hydrophoben Teil der Membran stecken. Dadurch ändert das LLO insgesamt seine Orientierung, der Zuckerteil kommt auf die Membranaussenseite zu liegen. Die Flippase ändert ihre Konformation während der Translokation des Oligosaccharids nicht. Erst wenn das LLO die Flippase verlassen hat, kehrt diese in den Ursprungszustand zurück.

Flippase-Mechanismus verstehen

Der nun gefundene Mechanismus unterscheidet sich grundlegend von bisher erforschten Transportprozessen, die über vergleichbare Transportkomplexe in Membranen ablaufen. «Das Flippen von Lipiden in Membranen hat Biochemiker und Zellbiologen seit jeher fasziniert; die biologische Lösung dieses Problems hat uns begeistert!» sagt Ko-Autor Markus Aebi, Professor für Mikrobiologie an der ETH Zürich.

Die Forschungsgruppen von ETH Zürich und Universität Bern sind die ersten, die dieses fundamentale biologische Rätsel, wie LLO geflippt wird, nun lösen konnten. Dazu haben sie ein neuartiges In-vitro-Modell entwickelt. ETH-Professor Aebi betont, dass es nur durch die Zusammenarbeit von Strukturbiologen, Chemikern und Mikrobiologen gelungen ist, diesen grundlegenden Mechanismus zu entschlüsseln: «Alle Gruppen haben ihre jeweilige Expertise auf ihrem Gebiet eingebracht. Nur so konnten wir diesen Erfolg erzielen.»

Nutzen für Therapeutika?

Die Arbeit sei reine Grundlagenforschung, obwohl es Erkrankungen gibt, die auf Mutationen in einer menschlichen Flippase zurückzuführen seien, so Aebi weiter. Diese Krankheiten gehören zur Klasse der «Congenital Disorders of Glycosylation». Beim Menschen sind über 10‘000 Glykosylierungsstellen in verschiedensten Proteinen bekannt, «deshalb wirken sich Veränderungen in der Glykosylierung, an der die Flippase grundlegend beteiligt ist, auf sehr viele Prozesse im Körper aus», sagt der ETH-Professor. Davon betroffen sei beispielsweise die Entwicklung und Reifung des Zentralnervensystems.

Ob sich das nun erarbeitete Wissen über die bakterielle Flippase PglK eines Tages anwenden lasse, sei zum heutigen Zeitpunkt unklar. Flippasen sind jedoch bereits heute Bestandteil von biotechnologischen Systemen zur Herstellung von Glykoproteinen die in der Diagnostik und als Therapeutika verwendet werden.

Literaturhinweis

Perez C, Gerber S, Boilevin J, Bucher M, Darbre T, Aebi M, Reymond J-L, Locher KP. Molecular view of lipid-linked oligosaccharide translocation across biological membranes. Nature, Advanced online publication, 12th August 2015. DOI: 10.1038/nature14953

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2015/08/flippase-s...

Peter Rüegg | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Erste SARS-CoV-2-Genome aus Österreich veröffentlicht
03.04.2020 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Die Mimik der Mäuse
03.04.2020 | Max-Planck-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: Quantenimaging: Unsichtbares sichtbar machen

Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern. Ein Forscherteam am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena hat eine Quantenimaging-Lösung entwickelt, die in extremen Spektralbereichen und mit weniger Licht genaueste Einblicke in Gewebeproben ermöglichen kann.

Optische Analyseverfahren wie Mikroskopie und Spektroskopie sind in sichtbaren Wellenlängenbereichen schon äußerst effizient. Doch im Infrarot- oder...

Im Focus: Sensationsfund: Spuren eines Regenwaldes in der Westantarktis

90 Millionen Jahre alter Waldboden belegt unerwartet warmes Südpol-Klima in der Kreidezeit

Ein internationales Forscherteam unter Leitung von Geowissenschaftlern des Alfred-Wegener-Institutes, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI)...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste SARS-CoV-2-Genome aus Österreich veröffentlicht

03.04.2020 | Biowissenschaften Chemie

Projekt »Lade-PV« gestartet: Fahrzeugintegrierte PV für Elektro-Nutzfahrzeuge

03.04.2020 | Energie und Elektrotechnik

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics