Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Flippiger Lipid-Transport

13.08.2015

Einem Team von Forschern der ETH Zürich und der Universität Bern ist es gelungen, die Struktur eines speziellen Transport-Enzyms, einer Flippase des Bakteriums Campylobacter jejuni, aufzuklären. Die Struktur lieferte ihnen darüber hinaus eine Erklärung dafür, wie Flippasen bestimmte Lipide auf den Kopf stellen können.

Membranen spielen in der Biologie eine überaus wichtige Rolle: Sie trennen das Zellinnere vom extrazellulären Aussenraum ab, sie geben Zellen Form und Grösse. Und nicht zuletzt laufen an Oberflächen von Membranen unzählige lebenswichtige Prozesse und der Stoffaustausch ab.


Die Flippase PlgK bildet einen Tunnel (grün), in den es den hydrophilen Kopfteil (rot-grau) eines Lipid-gebundenen Oligosaccharids für dessen Umorientierung in der Membran aufnehmen kann. (Illustration: aus Perez et al, 2015)

Gebildet werden Membranen in der Regel durch eine Doppelschicht von Lipiden. Lipide haben einen «wasserliebenden» (hydrophilen) Kopf, an welchen zwei lange, wasserabstossende (hydrophobe) Kohlenwasserstoffketten gebunden sind. Bei einer Doppellipidschicht liegen die hydrophilen Köpfe der Lipide aussen, die hydrophoben Ketten sind einander zugewandt. In die Membran eingebettet sind zahlreiche weitere Bestandteile wie Poren bildende Proteine oder Transport-Enzyme.

Lipid-Transport essenziell

Der Transport von Phospholipiden sowie von Lipid-gebundenen Oligosacchariden (Lipid-linked Oligosaccharide, LLO) ist aufgrund der bipolaren Natur der Doppelmembran – hydrophobes Inneres, hydrophile Aussenhaut - energieabhängig und nur schwierig zu bewerkstelligen. Hier kommen sogenannte Flippasen zum Einsatz. Das sind Transportproteine, die über einen besonderen Flipp-Mechanismus Lipide von der einen auf die andere Seite der Membran bringen. Flippasen haben eine wichtige Rolle beim Aufrechterhalten der Asymmetrie von zellulären Membranen, also in der unterschiedlichen Lipid-Zusammensetzung der Innen- und Aussenseite.

Die asymmetrische Verteilung von Lipiden beeinflusst bei Säugern etwa die Blutgerinnung, die Immunerkennung oder den programmierten Zelltod, die Apoptose. Wissenschaftler vermuten, dass eine aus den Fugen geratene Lipid-Asymmetrie mit neurodegenerativen Krankheiten wie dem Alzheimer-Syndrom in Verbindung stehen könnte. Zudem spielen Flippasen eine essentielle Rolle im Transport von Lipid-gebundenen Oligosacchariden, die bei der Glykosylierung auf Proteine übertragen werden.

Flippase-Struktur erstmals aufgeklärt

Bislang kannten Biologen weder die genaue Struktur von Flippasen noch deren Mechanismus, wie sie die LLO umorientieren. Nun zeigt eine Forschungsgruppe von Wissenschaftlern der ETH Zürich und der Universität Bern, unter der Leitung von ETH-Professor Kaspar Locher, wie eine dieser Flippasen, die bakterielle «PglK», aufgebaut ist und wie sie funktioniert. PglK sitzt in der Membran des Bakteriums Campylobacter jejuni, einem Krankheitserreger des Menschen.

Um die molekulare Struktur von PglK zu bestimmten, isolierten die Forschenden diese Flippase aus Bakterienmembranen und «froren» die gefundenen Moleküle ein, indem sie diese kristallisierten. Die Kristalle wurden danach mittels Röntgenspektroskopie untersucht und die Positionen der Atome, aus welchen die Flippase besteht, mit hoher Auflösung bestimmt. So erhielten die Wissenschaftlerinnen und Wissenschaftler von drei verschiedenen Stadien dieses beweglichen Moleküls die räumliche Anordnung. Die Kenntnis der Stadien ermöglichte es ihnen schliesslich auch, einen molekularen Mechanismus abzuleiten, wie PglK LLOs umlagert.

So zeigen die Forschenden in ihrer Arbeit, die eben in der Fachzeitschrift Nature veröffentlicht wurde, dass PglK aus zwei identischen Untereinheiten besteht, die sich unter Energiezufuhr wie eine Schere bewegen. Der hydrophile Zuckerteil des Lipid-gebundenen Oligosaccharids wird dann wie einem Kreditkartenlesegerät durch einen ebenfalls hydrophilen Kanal von PglK gezogen. Der hydrophobe Lipid-Teil des Moleküls hingegen bleibt im hydrophoben Teil der Membran stecken. Dadurch ändert das LLO insgesamt seine Orientierung, der Zuckerteil kommt auf die Membranaussenseite zu liegen. Die Flippase ändert ihre Konformation während der Translokation des Oligosaccharids nicht. Erst wenn das LLO die Flippase verlassen hat, kehrt diese in den Ursprungszustand zurück.

Flippase-Mechanismus verstehen

Der nun gefundene Mechanismus unterscheidet sich grundlegend von bisher erforschten Transportprozessen, die über vergleichbare Transportkomplexe in Membranen ablaufen. «Das Flippen von Lipiden in Membranen hat Biochemiker und Zellbiologen seit jeher fasziniert; die biologische Lösung dieses Problems hat uns begeistert!» sagt Ko-Autor Markus Aebi, Professor für Mikrobiologie an der ETH Zürich.

Die Forschungsgruppen von ETH Zürich und Universität Bern sind die ersten, die dieses fundamentale biologische Rätsel, wie LLO geflippt wird, nun lösen konnten. Dazu haben sie ein neuartiges In-vitro-Modell entwickelt. ETH-Professor Aebi betont, dass es nur durch die Zusammenarbeit von Strukturbiologen, Chemikern und Mikrobiologen gelungen ist, diesen grundlegenden Mechanismus zu entschlüsseln: «Alle Gruppen haben ihre jeweilige Expertise auf ihrem Gebiet eingebracht. Nur so konnten wir diesen Erfolg erzielen.»

Nutzen für Therapeutika?

Die Arbeit sei reine Grundlagenforschung, obwohl es Erkrankungen gibt, die auf Mutationen in einer menschlichen Flippase zurückzuführen seien, so Aebi weiter. Diese Krankheiten gehören zur Klasse der «Congenital Disorders of Glycosylation». Beim Menschen sind über 10‘000 Glykosylierungsstellen in verschiedensten Proteinen bekannt, «deshalb wirken sich Veränderungen in der Glykosylierung, an der die Flippase grundlegend beteiligt ist, auf sehr viele Prozesse im Körper aus», sagt der ETH-Professor. Davon betroffen sei beispielsweise die Entwicklung und Reifung des Zentralnervensystems.

Ob sich das nun erarbeitete Wissen über die bakterielle Flippase PglK eines Tages anwenden lasse, sei zum heutigen Zeitpunkt unklar. Flippasen sind jedoch bereits heute Bestandteil von biotechnologischen Systemen zur Herstellung von Glykoproteinen die in der Diagnostik und als Therapeutika verwendet werden.

Literaturhinweis

Perez C, Gerber S, Boilevin J, Bucher M, Darbre T, Aebi M, Reymond J-L, Locher KP. Molecular view of lipid-linked oligosaccharide translocation across biological membranes. Nature, Advanced online publication, 12th August 2015. DOI: 10.1038/nature14953

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2015/08/flippase-s...

Peter Rüegg | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues über ein Pflanzenhormon
07.12.2018 | Julius-Maximilians-Universität Würzburg

nachricht Selbstlernende Netzwerke lassen Forscher mehr sehen
07.12.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Supercomputer ohne Abwärme

Konstanzer Physiker eröffnen die Möglichkeit, Supraleiter zur Informationsübertragung einzusetzen

Konventionell betrachtet sind Magnetismus und der widerstandsfreie Fluss elektrischen Stroms („Supraleitung“) konkurrierende Phänomene, die nicht zusammen in...

Im Focus: Drei Nervenzellen reichen, um eine Fliege zu steuern

Uns wirft so schnell nichts um. Eine Fruchtfliege kann dagegen schon ein kleiner Windstoß vom Kurs abbringen. Drei große Nervenzellen in jeder Hälfte des Fliegenhirns reichen jedoch aus, um die Fliege mit Hilfe visueller Signale wieder auf Kurs zu bringen.

Bewegen wir uns vorwärts, zieht die Umwelt in die entgegengesetzte Richtung an unseren Augen vorbei. Drehen wir uns, verschiebt sich das Bild der Umwelt im...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Drei Komponenten auf einem Chip

Wissenschaftlern der Universität Stuttgart und des Karlsruher Institutes für Technologie (KIT gelingt wichtige Weiterentwicklung auf dem Weg zum Quantencomputer

Quantencomputer sollen bestimmte Rechenprobleme einmal sehr viel schneller lösen können als ein klassischer Computer. Einer der vielversprechendsten Ansätze...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Großes Interesse an erster Fachtagung

07.12.2018 | Veranstaltungen

Entwicklung eines Amphibienflugzeugs

04.12.2018 | Veranstaltungen

Neue biologische Verfahren im Trink- und Grundwassermanagement

04.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erstmalig in Deutschland: Erfolgreiche Bestrahlungstherapie lebensbedrohlicher Herzrhythmusstörung

07.12.2018 | Medizintechnik

Nicht zu warm und nicht zu kalt! Seminar „Thermomanagement von Lithium-Ionen-Batterien“ am 02.04.2019 in Aachen

07.12.2018 | Seminare Workshops

Seminar „Magnettechnik - Magnetwerkstoffe“ vom 19. – 20.02.2019 in Essen

07.12.2018 | Seminare Workshops

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics