Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Flimmerhärchen im Gehirn - mit dem Strom ans Ziel

08.07.2016

Wenn wir uns den Kopf anstoßen, geht das meist harmlos aus. Dies verdanken wir den mit Flüssigkeit gefüllten Hirnkammern in unserem Gehirn. Das Hirnwasser hat aber weit mehr als eine Schutzfunktion: Es entfernt Müll, versorgt unser Nervengewebe mit Nährstoffen und transportiert Botenstoffe. Doch wie diese Botenstoffe an ihr Ziel befördert werden, ist noch ungeklärt. Forscher haben nun herausgefunden, dass Flimmerhärchen den Weg weisen könnten: Ihre Schlagbewegungen erzeugen Ströme, die wie Förderbänder fungieren und darüber molekulare „Fracht“ transportieren. Die Ergebnisse der Wissenschaftler lassen vermuten, dass diese Ströme Botenstoffe gezielt an ihre Wirkorte im Gehirn weiterleiten.

Oberfläche spezialisierter Zellen im Inneren unseres Körpers machen diesen buchstäblich zu einer haarigen Angelegenheit. Flimmerhärchen befreien unsere Atemwege von Staub, Schleim und Krankheitserregern; transportieren Eizellen durch den Eileiter, und Spermien bewegen sich mit ihrer Hilfe vorwärts.


Strömungskarte im dritten Ventrikel des Maushirns. Linien symbolisieren Ströme entlang der Ventrikelwand. Pfeile veranschaulichen die Hauptstromrichtungen in einzelnen Bereichen.

Regina Faubel, Hartmut Sebesse / Max-Planck-Institut für biophysikalische Chemie

Auch die vier Hirnkammern in unserem Gehirn – die sogenannten Ventrikel – werden von einer Schicht hoch spezialisierter Zellen ausgekleidet, die auf ihrer Oberfläche mit Bündeln von Flimmerhärchen besetzt sind. Zwar ist jedes einzelne von ihnen nur wenige tausendstel Millimeter groß. Doch wenn Hunderte von ihnen im Gleichklang peitschenartig schlagen, können diese Härchen kräftige Ströme erzeugen.

Gregor Eichele und Regina Faubel vom Max-Planck-Institut für biophysikalische Chemie ist es gemeinsam mit Eberhard Bodenschatz und Christian Westendorf vom Max-Planck-Institut für Dynamik und Selbstorganisation jetzt gelungen, das komplexe Netzwerk dieser Ströme in isoliertem Hirnkammergewebe sichtbar zu machen. Für ihre Untersuchungen konzentrierten sich die Göttinger Forscher auf die dritte Hirnkammer, die in den Hypothalamus eingebettet ist.

„Der Hypothalamus ist eine sehr wichtige Schaltzentrale. Er steuert beispielsweise Kreislauf und Körpertemperatur, aber auch Sexualverhalten, Nahrungsaufnahme und Hormonhaushalt. Es gibt daher einen umfangreichen Transport von Botenstoffen über das Hirnwasser vom und zum Hypothalamus“, erklärt Gregor Eichele, Leiter der Abteilung Gene und Verhalten am Max-Planck-Institut für biophysikalische Chemie.

Leuchtende Kügelchen unter dem Mikroskop

Die Flüssigkeitsbewegung lässt sich allerdings unter einem Mikroskop nicht direkt beobachten. Um diese sichtbar zu machen, entwickelte Regina Faubel, wissenschaftliche Mitarbeiterin in Eicheles Abteilung, einen neuen experimentellen Ansatz mit isoliertem Hirnkammergewebe aus der Maus. In der Kulturschale injizierte sie dem Nervengewebe winzige fluoreszierende Kügelchen, die daraufhin als Leuchtmarker mit dem Nährmedium mitschwammen.

Nachfolgend erfasste die Wissenschaftlerin den Weg eines jeden Kügelchens innerhalb des Nervengewebes unter dem Mikroskop. Mithilfe eines von ihrem Kollegen Christian Westendorf eigens dafür entwickelten Computerprogramms setzten die Forscher die umfangreichen Daten dann zu einem wissenschaftlich auswertbaren Bild zusammen.

„Wir sehen auf diesen Bildern ein komplexes Netz von ‚Flüssigkeitsstraßen’ entlang der Innenseite der Hirnkammer. Doch anders als das Blut, das durch unsere Blutgefäße fließt, sind diese Straßen nicht durch Wandungen begrenzt. Die spannende Frage für uns war daher: Wird das Strömungsmuster allein durch das synchronisierte Schlagen der Flimmerhärchen erzeugt?“, berichtet Regina Faubel, Erstautorin der Studie. Im nächsten Schritt filmten die Wissenschaftler die Flimmerhärchen daher live in Aktion und bestimmten die Schlagrichtung der Flimmerhärchen sowie die daraus resultierende Strömung.

„Unsere Experimente haben gezeigt, dass die Ströme tatsächlich allein durch die Bewegungen der Härchen erzeugt werden. Diese funktionieren wie Förderbänder und wären damit durchaus in der Lage, Botenstoffe an den richtigen Ort im Gehirn zu transportieren“, so Eberhard Bodenschatz, Leiter der Abteilung Hydrodynamik, Strukturbildung und Biokomplexität am Max-Planck-Institut für Dynamik und Selbstorganisation. „Auch könnten die Ströme dazu beitragen, Substanzen lokal zu begrenzen, indem die gegeneinander verlaufenden Flüssigkeitsstraßen wie Barrieren wirken“, ergänzt Christian Westendorf, Zweitautor der Studie.

Wechselnde Strömungsrichtungen

Doch anders als das Straßennetz, in dem wir uns tagtäglich mit dem Auto oder Fahrrad bewegen, sind diese Flüssigkeitsstraßen keinesfalls starr. Zur Überraschung der Forscher wechselten die Härchen in einem zeitlichen Rhythmus ihre Schlagrichtung. Nach vorherrschender Lehrmeinung gilt die Schlagrichtung der Flimmerhärchen jedoch als unveränderbar.

„Im Hirnwasser bei uns Menschen gibt es Hunderte, wenn nicht sogar Tausende physiologisch wirksamer Substanzen“, wie Eichele betont. „Das von uns entdeckte Netzwerk von Strömen spielt vermutlich eine wichtige Rolle, um diese Stoffe zu verteilen. In weiteren Versuchen möchten wir aufklären, welche Botenstoffe über die Ströme transportiert und wo diese schließlich im Gewebe deponiert werden.“ „Auch ist das Verständnis von der Physik der Strömungsdynamik der Flimmerhärchen selbst ein Forschungsziel“, sagt Bodenschatz.

Original-Veröffentlichung:
Regina Faubel, Christian Westendorf, Eberhard Bodenschatz, Gregor Eichele: Cilia-based flow networks in the brain ventricles. Science 353, 176-1788 (8. Juli 2016), DOI: 10.1126/science.aae0450

Kontakt:
Prof. Dr. Gregor Eichele, Abteilung Gene und Verhalten
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201-2701
E-Mail: gregor.eichele@mpibpc.mpg.de

Prof. Dr. Eberhard Bodenschatz, Abteilung Hydrodynamik, Strukturbildung und Biokomplexität
Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen
Tel.: +49 551 5176-300
E-Mail: eberhard.bodenschatz@ds.mpg.de

Weitere Informationen:

http://www.mpibpc.mpg.de/15410396/pr_1623 – Original-Pressemitteilung vom Max-Planck-Institut für biophysikalische Chemie
http://www.mpibpc.mpg.de/de/eichele – Webseite der Abteilung Gene und Verhalten,
http://Max-Planck-Institut für biophysikalische Chemie
http://www.lfpn.ds.mpg.de – Webseite der Abteilung Hydrodynamik, Strukturbildung und Biokomplexität, Max-Planck-Institut für Dynamik und Selbstorganisation

Dr. Carmen Rotte | Max-Planck-Institut für biophysikalische Chemie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Tuberkulose: Neue Einblicke in den Erreger
10.10.2019 | Julius-Maximilians-Universität Würzburg

nachricht Nanostrukturen helfen, die Haftung von Krankenhauskeimen zu reduzieren
10.10.2019 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Wenn die Erde flüssig wäre

Eine heisse, geschmolzene Erde wäre etwa 5% grösser als ihr festes Gegenstück. Zu diesem Ergebnis kommt eine Studie unter der Leitung von Forschenden der Universität Bern. Der Unterschied zwischen geschmolzenen und festen Gesteinsplaneten ist wichtig bei die Suche nach erdähnlichen Welten jenseits unseres Sonnensystems und für das Verständnis unserer eigenen Erde.

Gesteinsplaneten so gross wie die Erde sind für kosmische Massstäbe klein. Deshalb ist es ungemein schwierig, sie mit Teleskopen zu entdecken und zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

Zukunft Bau Kongress 2019 „JETZT! Bauen im Wandel“

10.10.2019 | Veranstaltungen

Aktuelle Trends an den Finanzmärkten im Schnelldurchlauf

09.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fraunhofer IZM setzt das E-Auto auf die Überholspur

11.10.2019 | Energie und Elektrotechnik

IVAM-Produktmarkt auf der COMPAMED 2019: Keine Digitalisierung in der Medizintechnik ohne Mikrotechnologien

11.10.2019 | Messenachrichten

Kryptografie für das Auto der Zukunft

11.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics