Ein Fisch sieht rot

Elefantenrüsselfische werden etwa fünfzehn bis zwanzig Zentimeter groß. Juniorprofessor Dr. Jacob Engelmann von der Universität Bielefeld hat untersucht, wie optische Reize vom Gehirn aufgenommen werden. Vanessa Kassing<br>

Elefantenrüsselfische waren unter Biologen bislang vor allem durch eines bekannt: Sie orientieren sich mithilfe eines elektrischen Feldes, das sie selbst aussenden.

Unter Beteiligung der Universität Bielefeld hat ein internationales und interdisziplinäres Team aus Neurobiologen, Zoologen und Physikern nun nachgewiesen, dass auch das Auge des Elefantenrüsselfisches besondere Eigenschaften aufweist. Ihre Ergebnisse haben die Wissenschaftlerinnen und Wissenschaftler jetzt im renommierten Science-Magazin veröffentlicht.

Elefantenrüsselfische leben in trüben Gewässern in Westafrika. Um sich zu orientieren, nutzen sie ein selbst hergestelltes elektrisches Feld. Dies deckt allerdings nur einen Bereich von etwa zehn Zentimetern ab. Die Forscher haben nun nachgewiesen, dass sich der Fisch für größere Distanzen auf seine Augen verlässt – und diese besondere Eigenschaften haben: Die Zapfen der Netzhaut sind in eine becherartige, verspiegelte Struktur eingebettet, sodass das eintreffende Licht verstärkt wird. Die lichtempfindlichen Stäbchen hingegen liegen darunter; sie erreicht weniger Licht.

Was das für die Sicht des Fisches bedeutet, haben Juniorprofessor Dr. Jacob Engelmann von der Fakultät für Biologie der Universität Bielefeld und sein Doktorand Roland Pusch (Universität Bonn) durch physiologische Messungen im Sehzentrum nachgewiesen: Normalerweise arbeiten die empfindlichen Stäbchen nur in der Dämmerung und tragen im Hellen nicht zum Sehen bei. Aufgrund ihrer geschützten Lage sind die Stäbchen des Fisches jedoch auch im Hellen noch funktionsfähig. Die Messungen legen dabei nahe, dass die Information von Stäbchen und Zapfen gemeinsam verarbeitet werden und sich ihre normalerweise getrennten Funktionen, nämlich das Schwarz-Weiß-Sehen bei Nacht und das Farbsehen bei Tag, verbinden. Das Tier verliert die Möglichkeit Farben zu trennen, erhöht aber gleichzeitig die Lichtausbeute. „In den trüben Gewässern, in denen der Elefantenrüsselfisch vorkommt, ist es vor allem das rote Licht, das sich ausbreiten kann. Dieses verstärken die Becherstrukturen, sodass der Fisch als Folge sozusagen rot sieht“, sagt Engelmann.

Darüber hinaus konnten Dr. Jacob Engelmann und Roland Pusch feststellen, dass der Elefantenrüsselfisch überraschend „schnell“ sieht: nämlich 50 Bilder pro Sekunde. Die zum Vergleich untersuchten Goldfische konnten nur 30 Bilder sehen. Gemeinsam mit der Kombination von Stäbchen und Zapfen hilft diese schnelle Reizverarbeitung dem Fisch, nahende Feinde auch im trüben Wasser zu erkennen und schnell auszuweichen.

Die Forschung am Elefantenrüsselfischauge fand unter anderem im Rahmen des von der Deutschen Forschungsgemeinschaft geförderten Projekts „Die Retina von schwach-elektrischen Fischen – ein hochspezialisiertes Sinnesorgan mit unbekannten Funktionsprinzipien“ statt. Beteiligt waren neben der Universität Bielefeld die Universitäten Bayreuth, Bonn, Dresden, Cambridge (Großbritannien), Leipzig, Mainz, Tübingen sowie das Pavlov Institut für Physiologie in St. Petersburg (Russland) und das Institut für Augenheilkunde in London (Großbritannien).

Publikation: „Photonic Crystal Light Collectors in Fish Retina Improve Vision in Turbid Water“, Science 29, 2012, Vol. 336 no. 6089 pp. 1700-1703 DOI: 10.1126/science.1218072

Kontakt:
Jun.-Prof. Dr. Jacob Engelmann, Universität Bielefeld
Fakultät für Biologie & CITEC / AG Active Sensing
Telefon: 0521 106-4641
E-Mail: jacob.engelmann@uni-bielefeld.de

Media Contact

Sandra Sieraad idw

Weitere Informationen:

http://www.uni-bielefeld.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern-befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer