Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Fingerabdruck" diffuser Protonen entschlüsselt

02.12.2016

Der Grotthuß-Mechanismus, benannt nach dem Leipziger Naturwissenschaftler Freiherr Theodor von Grotthuß (1785-1822), erklärt qualitativ den Transport von elektrischen Ladungen in wässrigen Lösungen. Dieser spielt in alltäglichen biochemischen Prozessen, zum Beispiel der Signalübertragung in Proteinen, eine fundamentale Rolle. Doch die molekularen Details des Ladungstransports sind noch immer nicht abschließend geklärt.

Wissenschaftlern des Wilhelm-Ostwald-Instituts für Physikalische und Theoretische Chemie der Universität Leipzig ist es nun erstmals gelungen, den spektroskopischen "Fingerabdruck" gelöster Protonen, die dem Ladungstransport zu Grunde liegen, experimentell zu entschlüsseln. Ihre Ergebnisse präsentieren sie in der aktuellen Ausgabe des renommierten Wissenschaftsmagazins "Science".


Die Doktoranden Harald Knorke (links) und Matias Fagiani am Steuerungspult des sogenannten Photodissoziationsspektrometers

(Video)

Foto: Swen Reichhold/Universität Leipzig

Bitte beachten Sie: Zu diesem Thema hat die Universität Leipzig auch ein Video produziert, zu finden auf dem YouTube-Kanal der Universität.

In einer Kooperation mit Wissenschaftlern der US-amerikanischen Universitäten Yale, Pittsburgh, Ohio State und Washington gelang es den Doktoranden Matias Fagiani und Harald Knorke aus dem Arbeitskreis von Prof. Dr. Knut Asmis, Schlüsselmotive auszufrieren und bei Temperaturen nahe dem absoluten Nullpunkt im Infrarotbereich zu spektroskopieren. "Die diffuse Natur der in Wasser gelösten Protonen erschwert eine spektroskopische Charakterisierung ungemein", sagt Asmis. "Umso höher ist die Leistung der Arbeitsgruppe einzustufen."

Theodor von Grotthuß, selbst Student der Universität Leipzig, postulierte 1805, dass sich Wassermoleküle in einem elektrischen Feld, zum Beispiel zwischen zwei Elektroden, nicht nur zwecks Ladungstransport teilen können, der sogenannten Autodissoziation des Wassers, sondern dass sich die so erzeugten Ladungsträger viel effektiver entlang einer Kette aus vernetzten Wassermolekülen fortpflanzen können, analog zu einer Kette von umfallenden Dominosteinen.

Als Konsequenz wandert nicht das in Wasser gelöste Proton von einer Elektrode zur anderen, um die Ladung zu übertragen, sondern es reicht aus, dass sich der Ladungsdefekt entlang dieser Kette fortpflanzt, was bedeutend schneller und effektiver geht.

"Experimente an molekularen Aggregaten in ihrer Gasphase wurden lange belächelt, da die Experimente nicht am realen System, sondern an einem molekularen Ausschnitt daraus in Isolation durchgeführt werden", erläutert Asmis.

"In diesem Fall handelt es sich um Experimente an genau einem Proton, umgeben von vier bis zu sechs Wassermolekülen. Der große Vorteil der Untersuchungen an diesen abstrakten Modellsystemen ist deren extrem hohe Empfindlichkeit und Selektivität. Darüber hinaus können die Messwerte direkt mit den Resultaten aus hochwertigen quantenmechanischen Simulationen verglichen und interpretiert werden." Deren Anwendung auf die ausgedehnteren realen Systeme sei aufgrund der dafür benötigten enormen Rechenleistung auf diesem Niveau "zurzeit noch völlig undenkbar".

"Wir verstehen jetzt viel besser, wie sich die unmittelbare Umgebung eines gelösten Protons in seinem spektroskopischen Fingerabdruck widerspiegelt", erklärt Asmis. "Dies stellt eine der Grundvoraussetzungen für die Durchführung und Interpretation von weiterführenden Arbeiten auf diesem Gebiet dar, zum Beispiel um die Beweglichkeit der Protonen in Echtzeit zu charakterisieren." Ein solcher experimenteller Aufbau, "mit dem man ultimativ einen Film des Grotthuß-Mechnismus mit atomarer Auflösung abdrehen kann", befinde sich gerade in der Planungsphase, sagt Asmis. Er soll den Wissenschaftlern an der Fakultät für Chemie und Mineralogie innerhalb des nächsten Jahres zur Verfügung stehen.


Fachveröffentlichung in "Science" (02.12.2016):
C.T. Wolke, J.A. Fournier, L.C. Dzugan, M.R. Fagiani, T.T. Odbadrakh, H. Knorke, K.D. Jordan, A.B. McCoy, K.R. Asmis und M.A. Johnson: "Spectroscopic Snapshots of the Proton Transfer Mechanism in Water"
DOI: 10.1126/science.aaf8425

Weitere Informationen:

Prof. Dr. Knut Asmis
Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie
Telefon: +49 341 97-36421
E-Mail: knut.asmis@uni-leipzig.de

https://de.wikipedia.org/wiki/Theodor_Grotthu%C3%9F
http://science.sciencemag.org/content/354/6316/1131
http://woi.chemie.uni-leipzig.de

Susann Huster | Universität Leipzig
Weitere Informationen:
http://www.uni-leipzig.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Klimafolgenforschung in Hannover: Kleine Pflanzen gegen große Wellen
17.08.2018 | Leibniz Universität Hannover

nachricht Forschende entschlüsseln das Alter feiner Baumwurzeln
17.08.2018 | Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft WSL

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bionik im Leichtbau

17.08.2018 | Verfahrenstechnologie

Klimafolgenforschung in Hannover: Kleine Pflanzen gegen große Wellen

17.08.2018 | Biowissenschaften Chemie

HAWK-Ingenieurinnen und -Ingenieure entwickeln die leichteste 9to-LKW-Achse ihrer Art

17.08.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics