Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Falsch verbunden

25.04.2016

Gestörte Erregungsleitung im Großhirn birgt neue Erkenntnisse für Epilepsieforschung

Eine Forschungsgruppe des Exzellenzclusters BrainLinks-BrainTools um die Neurobiologin Prof. Dr. Carola Haas, die auch Mitglied am Bernstein Center Freiburg ist, hat einen Mechanismus entdeckt, der an der Entstehung von Schläfenlappenepilepsie beteiligt sein könnte.


Dreidimensionale Darstellung der Körnerzellen im Hippocampus (grün) und den einlaufenden Fasern der Großhirnrinde (magenta) mit Hilfe fluoreszierender Farbstoffe. Copyright: Cerebral Cortex / Oxford University Press

In ihrem Artikel für die Fachzeitschrift „Cerebral Cortex“ hat das größtenteils in der Klinik für Neurochirurgie des Universitätsklinikums Freiburg ansässige Team anschaulich gemacht, wie vom Schläfenlappen ausgehende Reize sowie die Veränderung bestimmter Synapsen und Nervenzellen ihre Fortleitung verstärken und somit das Anfallspotenzial erhöhen.

Auf Grundlage präziser Markierungstechniken und durch den Einsatz von genetisch veränderten Mäusen visualisierten die Forscherinnen und Forscher die Fasersysteme und die synaptischen Kontakte zwischen Schläfenlappen und Hippocampus.

Im gesunden Hirn führt vom Rand des Schläfenlappens, welcher für die sprachliche Auffassung und visuelle Erkennung eine Rolle spielt, ein Signalweg zum Hippocampus, einer vor allem für die Bildung von Gedächtnisinhalten wichtigen Zone des Großhirns. Aus anatomischer Sicht verläuft der Eingangskanal zum Hippocampus über ein Fasersystem, in welchem elektrische Signale zu bestimmten Zellgruppen übertragen werden.

In der ersten Zellgruppe werden die Reize sortiert, an die nächste Zellgruppe weitergeleitet und dann wieder zum Schläfenlappen zurückgeschickt. Vereinfacht gesprochen werden so Informationen über die Umwelt für deren Weiterverarbeitung in einem anderen Teil des Gehirns aufbereitet und abgespeichert.

Was aber passiert innerhalb dieses Regelkreises bei Epilepsie? Haas und ihre Kolleginnen und Kollegen wiesen nach, dass kurz nach dem Ingangsetzen einer epileptischen Reaktion das Signal vom Hippocampus zurück zum Schläfenlappen – also der letzte Schritt – ausbleibt, während es auf dem Weg zum Hippocampus intakt bleibt.

Überraschend für die Forscher war, dass innerhalb dieses Schaltkreises neue synaptische Kontakte entstehen und die Größe sowie Komplexität der Synapsen zunimmt. Diese Formveränderungen könnten dazu führen, dass Signale verstärkt weitergegeben werden und letztlich das Anfallsrisiko erhöhen.

In-vitro-Untersuchungen bestätigten die Vermutung, dass einer der beteiligten Zelltypen bei epileptischen Mäusen erregter ist als normal. Die Forscher gehen davon aus, dass diese Zellen womöglich als weitläufig verschaltete epileptische Knotenpunkte im Hippocampus fungieren und dass der Erregungskreislauf insbesondere dort krankhafte Veränderungen bewirken könnte. „Die Frage ist von besonderer Bedeutung, da bislang noch nicht ganz klar ist, welche Faktoren im Hippocampus zur Auslösung epileptischer Anfälle beitragen”, sagt Haas.

Das Team möchte deshalb als nächstes die gesamte veränderte Signalkette zwischen Schläfenlappen und Hippocampus erforschen. Im Detail wird etwa zu untersuchen sein, ob die Verstärkung des Eingangssignals Ursache oder Folge epileptischer Aktivität ist. Interessant zu wissen wäre für die Forscher auch, auf Basis welcher molekularer Mechanismen es zu synaptischen Veränderungen kommt.

Vermutlich könnten weitere Untersuchungsschritte die Entdeckung neuer therapeutischer oder vorbeugender Strategien nach sich ziehen. Ein therapeutisches Potenzial sieht Haas in der Modifizierung der betroffenen Stellen: „Wenn wir die Erregung des Hippocampus, etwa durch zellspezifische genetische Manipulation, mindern können, wäre es vielleicht möglich, den Schweregrad der Epilepsie zu senken und gleichzeitig die Nebenwirkungen der Therapie zu verringern. Allerdings bedarf es weiterer Forschung, um dieses ehrgeizige Ziel zu erreichen.”

Originalveröffentlichung

Janz P, Savanthrapadian S, Häussler U, Kilias A, Nestel S, Kretz O, Kirsch M, Bartos M, Egert U, Haas CA (2016) Synaptic remodeling of entorhinal input contributes to an aberrant hippocampal network in temporal lobe epilepsy. Cerebral Cortex.

DOI: 10.1093/cercor/bhw093

URL: http://cercor.oxfordjournals.org/content/early/2016/04/12/cercor.bhw093.short?rs...

Kontakt:
Prof. Dr. Carola Haas
Leiterin
Sektion Grundlagen epileptischer Erkrankungen
Klinik für Neurochirurgie
Universitätsklinikum Freiburg
Tel.: 0761/270-52950
E-Mail: carola.haas@uniklinik-freiburg.de

Levin Sottru
Science Communicator
Exzellenzcluster BrainLinks-BrainTools
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-67721
E-Mail: sottru@blbt.uni-freiburg.de

Michael Veit
Science Communicator
Bernstein Center Freiburg
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-9322
E-Mail: michael.veit@bcf.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2016/pm.2016-04-22.59

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sinneswahrnehmung ist keine Einbahnstraße
17.10.2018 | Eberhard Karls Universität Tübingen

nachricht Neuer ALS-Bluttest: Hilfe bei der Differenzialdiagnose und Hinweise auf Krankheitsverlauf
17.10.2018 | Universität Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Im Focus: Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

Die Forschungskooperation zwischen der Universität Yale und der Universität Rostock hat neue wissenschaftliche Ergebnisse hervorgebracht. In der renommierten Zeitschrift „Angewandte Chemie“ berichten die Wissenschaftler über eine Dreierkette aus Ionen gleicher Ladung, die durch sogenannte Wasserstoffbrücken zusammengehalten werden. Damit zeigen die Forscher zum ersten Mal eine Dreierkette aus gleichgeladenen Ionen, die sich im Grunde abstoßen.

Die erfolgreiche Zusammenarbeit zwischen den Professoren Mark Johnson, einem weltbekannten Cluster-Forscher, und Ralf Ludwig aus der Physikalischen Chemie der...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2018

16.10.2018 | Veranstaltungen

Künstliche Intelligenz in der Medizin

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Sinneswahrnehmung ist keine Einbahnstraße

17.10.2018 | Biowissenschaften Chemie

Space Farming dank Pflanzenhormon Strigolacton

17.10.2018 | Agrar- Forstwissenschaften

Oberflächen mit flexiblen und handlichen Plasmaquellen aktivieren

17.10.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics