Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Experimente mit Bakterien: Evolution im Labor

11.09.2017

Experimente mit Bakterien zeigen, dass Gene miteinander fusionieren und so neue Proteine hervorbringen können

Lebewesen müssen sich fortwährend an ihre Umgebung anpassen, um darin zu bestehen. Verantwortlich für solche Anpassungen sind Änderungen im Erbgut. Paul Rainey vom Max-Planck-Institut für Evolutionsbiologie in Plön hat zusammen mit Kollegen aus Neuseeland in Laborexperimenten die Entstehung neuer, besser angepasster Zelltypen untersucht.


Links: Glatte Bakterienkolonien (Mitte) im Zellinneren wachsen innerhalb des Kulturmediums (unten). Rechts: Faltige Kolonien (Mitte) bilden Matten an der Oberfläche der Kulturflüssigkeit (unten).

MPI f. Evolutionsbiologie/ P. Rainey

Dabei haben die Forscher entdeckt, dass Bakterien neue Eigenschaften unter anderem durch die Fusion zweier Gene hervorbringen können. In manchen der Zellen sind Gene dadurch unter die Kontrolle eines neuen Promotors gelangt, so dass größere Mengen eines Proteins gebildet werden. In einem anderen Fall haben sich zwei benachbarte Gene miteinander vereinigt.

Das aus Anteilen der beiden ursprünglichen Gene zusammengesetzte Protein besitzt einen anderen Bestimmungsort innerhalb der Zellen – ein Effekt, der auch aus anderen Organismen wie dem Menschen bekannt ist. Die Folge einer solchen Genfusion sind Bakterienzellen, die besser an ihre Umgebung angepasst sind.

Änderungen im genetischen Code bestehender Gene – sogenannte Mutationen – können einen Organismus mit neuen Eigenschaften ausstatten. Auch die Verdopplung von Genen oder der Einbau zusätzlicher DNA-Abschnitte können seine Anpassungsfähigkeit erhöhen.

Gene können im Lauf der Evolution sogar komplett neu entstehen. Zuvor funktionslose Abschnitte des Erbguts werden dabei so verändert, dass sie die Vorlage für Proteine liefern. Ein weiterer bereits bekannter Mechanismus ist die Fusion zweier Gene, aus der dann ein neues Protein hervorgehen kann.

„Dieses Wissen beruht auf Erbgutvergleichen verschiedener Organismen. Da die Evolution meist sehr langsam arbeitet, lassen sich solche Veränderungen im Erbgut in der Regel nicht in Echtzeit beobachten – geschweige denn, wie sie das Überleben seines Trägers beeinflussen“, sagt Paul Rainey vom Max Planck Institut für Evolutionsbiologie.

Der Forscher konzentriert sich deshalb auf Bakterien. Diese vermehren sich nicht nur außerordentlich schnell, sie lassen sich auch auf kleinem Raum in riesiger Zahl im Labor züchten. Die dabei entstehenden Veränderungen im Erbgut können Forscher dann untersuchen und der Evolution so förmlich bei der Arbeit zusehen.

Rainey untersucht, wie das Bakterium Pseudomonas fluorescens neue Eigenschaften hervorbringt, mit denen es in den Kulturschalen seines Forschungslabors am besten überleben kann. Ursprünglich wachsen die Bakterien in flüssigem Kulturmedium. Mit der Zeit brauchen sie den darin enthaltenen Sauerstoff auf und bereiten so den Boden für eine neue Variante. Diese bilden Bakterienmatten an der Oberfläche, so dass sie Sauerstoff aus der Luft aufnehmen können. Diese Zellen lassen sich leicht an dem faltigen Aussehen ihrer Kolonien erkennen.

Auslöser der Mattenbildung sind Rainey und seinen Kollegen zufolge verschiedene Mutationen in Genen, die die Aktivität von Di-Guanylatzyklase-Enzymen hemmen. Diese Mutationen schalten Hemmstoffe aus, so dass die Di-Guanylatzyklasen aktiv werden können. Aber als die Forscher die hemmenden Signalwege unterbanden, stießen sie auf bislang unbekannte Mutationen, die die Bildung von Bakterienmatten ermöglichten. In einigen dieser Fälle ist das Di-Guanylatzyklase-Gen unter die Kontrolle eines anderen Promotors gelangt und wurde dadurch vermehrt produziert.

In manchen der neuen Bakterienzellen blieb die Aktivität des Gens jedoch unverändert. Eine Analyse der Mutationen in diesen Zellen ergab, dass diese Mutanten ein „chimäres“ Gen besitzen, das aus dem Di-Guanylatzyklase-Gen und einem benachbarten Gen zusammengesetzt ist.

Letzteres ist sonst in der Zellmembran aktiv. „Es muss also zu einer Fusion zweier Gene gekommen sein, deren Proteine sonst an unterschiedlichen Orten in der Zelle vorkommen“, erklärt Rainey. Das neue Protein besitzt eine Membrandomäne und ist damit in der Zellmembran verankert. Dadurch wird es aktiv.

Auch in anderen Organismen wechseln Proteine, die aus Genfusionen hervorgegangen sind, häufig ihren Bestimmungsort. So ist beim Menschen das sogenannte Kua-UEV-Gen das Resultat einer Fusion des Kua- und des UEV-Gens.

Das neue UEV-Protein kann sich nun an Membrane innerhalb der Zelle anlagern und neue Aufgaben übernehmen. Beim Menschen enthalten 64 Prozent der Gen-Familien für Mitochondrien-Proteine ein Gen für ein Protein, das anderswo in der Zelle aktiv ist. „Obwohl Fusionen von Genen in unseren Experimenten nur rund 0,1 Prozent der Fälle ausmachten, in denen Mutationen zu dem faltigen Zelltyp führten, könnten Fusionen in der Natur deutlich häufiger auftreten“, sagt Rainey.

Originalveröffentlichung:
Adaptive evolution by spontaneous domain fusion and protein relocalization
Andrew D. Farr , Philippe Remigi and Paul B. Rainey
Nature Ecology & Evolution, August 28, 2017

Kontakt:
Prof. Paul B. Rainey
MPI f. Evolutionsbiologie
Email: rainey@evolbio.mpg.de

Dr. Harald Rösch | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
Weitere Informationen:
http://www.mpg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren
16.11.2018 | Universität Bayreuth

nachricht Günstiger Katalysator für das CO2-Recycling
16.11.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics