Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Evolution mit der molekularen Schere untersucht

16.06.2016

Einen wichtigen Mechanismus der Evolution von Pflanzengenomen haben Forscher am Karlsruher Institut für Technologie (KIT) aufgeklärt: Anhand der Modellpflanze Ackerschmalwand untersuchten sie den Ursprung tandemartig wiederholter Sequenzen in der DNA und stellten fest, dass solche Sequenzen dann auftreten, wenn die beiden DNA-Stränge in deutlichem Abstand voneinander gebrochen werden. Die Wissenschaftler setzten für ihre Experimente die „molekulare Schere“ CRISPR/Cas ein. In der Zeitschrift PNAS stellen sie die Ergebnisse vor. (DOI: 10.1073/pnas.1603823113)

Die Evolution der Genome basiert auf Mutationen, das heißt Veränderungen des Erbguts, die an die Nachkommen weitergegeben werden. Dazu gehören Verdopplungen vorhandener Sequenzen in der DNA (Desoxyribonukleinsäure), dem Träger der genetischen Information. So können in der Evolution größere Genome mit mehr genetischer Information entstehen.


Zellkern von Arabidopsis thaliana (Ackerschmalwand), der die genetische Information enthält.

Abbildung: Holger Puchta, KIT

Verschiedene Mechanismen können zu solchen Verdopplungen führen. In Pflanzengenomen finden sich häufig kürzere DNA-Sequenzen, die tandemartig dupliziert sind. Wie solche Sequenzen entstehen, haben nun Forscher am Botanischen Institut II des KIT herausgefunden.

„Die DNA besteht ja aus zwei gegenläufigen Strängen. Unsere Ergebnisse zeigen, dass die Reparatur von deutlich voneinander entfernten Einzelstrangbrüchen in den beiden gegenläufigen Strängen eine wichtige Rolle bei der Entstehung von Duplikationen in Pflanzengenomen spielt“, erklärt Institutsleiter Professor Holger Puchta.

Wie die Wissenschaftler bei Untersuchungen an der Modellpflanze Ackerschmalwand (Arabidopsis thaliana) feststellten, führten jeweils zwei solche Einzelstrangbrüche und deren aufeinander abgestimmte Reparatur neben Deletionen, das heißt Auslassungen, regelmäßig zu tandemartigen Duplikationen von kürzeren Sequenzen nahe an den Bruchstellen.

Die Forscher führten die Einzelstrangbrüche gezielt in verschiedenen Regionen des Genoms und in verschiedenen Abständen voneinander herbei und analysierten die Ergebnisse der Reparatur durch DNA-Sequenzierung.

Um die Einzelstrangbrüche punktgenau zu erzeugen, setzten die Karlsruher Forscher eine neuartige „molekulare Schere“ ein – eine spezielle Form des CRISPR/Cas-Systems. „Bisher konnten wir nur mit molekularen Scheren arbeiten, die gleichzeitig beide Stränge schneiden und so einen Doppelstrangbruch in der DNA erzeugen. Mit dem modifizierten CRISPR/Cas System können wir nun erstmals eine Schere einsetzen, die nur einen Strang schneidet. So ist es jetzt möglich, die Reparatur solcher Schäden in der DNA im Detail zu untersuchen“, erläutert Puchta.

Die Bezeichnung CRISPR/Cas steht für einen bestimmten Abschnitt auf der DNA (CRISPR – Clustered Regularly Interspaced Short Palindromic Repeats) sowie ein Enzym (Cas), das diesen Abschnitt erkennt und die DNA genau dort schneiden kann. So lassen sich Gene einfach, schnell und präzise entfernen, einfügen oder austauschen.

Holger Puchta war in der Vergangenheit der erste Wissenschaftler überhaupt, der solche molekularen Scheren bei Pflanzen einsetzte. Bei jenen Untersuchungen zeigte er nicht nur, dass sie sich als Werkzeug für gezielte Genomveränderungen nutzen lassen, sondern fand auch heraus, dass Doppelstrangbrüche zu größeren Veränderungen in Pflanzengenomen führen können.

In der neuen Untersuchung, vorgestellt in der Zeitschrift Proceedings of the National Academy of Sciences of the United States of America (PNAS), zeigen die Forscher vom Botanischen Institut II des KIT nun, dass auch die Anwesenheit mehrerer Einzelstrangbrüche in der DNA zu Genomveränderungen führen kann. Solche Einzelstrangbrüche kommen unter natürlichen Bedingungen bei Pflanzen häufig vor, vor allem dann, wenn sie UV-Licht ausgesetzt sind. „Der neu entdeckte Mechanismus ist daher für das Verständnis der Evolution von Pflanzengenomen von großer Wichtigkeit“, sagt Holger Puchta.

Simon Schiml, Friedrich Fauser, and Holger Puchta: Repair of adjacent single-strand breaks is often accompanied by the formation of tandem sequence duplications in plant genomes. Proc. Natl. Acad. Sci. USA, 2016. DOI: 10.1073/pnas.1603823113

Weiterer Kontakt: Monika Landgraf, Pressesprecherin, Leitung Presse, Tel.: +49 721 608-48126, Fax: +49 721 608-43658, monika.landgraf@kit.edu

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 300 Mitarbeiterinnen und Mitarbeitern sowie 25 000 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Diese Presseinformation ist im Internet abrufbar unter: http://www.kit.edu

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Trockenstress – Biologen entschlüsseln SOS-Signal von Pflanzen
27.03.2020 | Universität Hohenheim

nachricht Der Venusfliegenfallen-Effekt: Neue Studie zeigt Fortschritte der Forschung an Immunproteinen
26.03.2020 | Jacobs University Bremen gGmbH

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nachwuchswissenschaftler der Universität Rostock erfinden einen Trichter für Lichtteilchen

Physiker der Arbeitsgruppe von Professor Alexander Szameit an der Universität Rostock ist es in Zusammenarbeit mit Kollegen von der Universität Würzburg gelungen, einen „Trichter für Licht“ zu entwickeln, der bisher nicht geahnte Möglichkeiten zur Entwicklung von hypersensiblen Sensoren und neuen Technologien in der Informations- und Kommunikationstechnologie eröffnet. Die Forschungsergebnisse wurden jüngst im renommierten Fachblatt Science veröffentlicht.

Der Rostocker Physikprofessor Alexander Szameit befasst sich seit seinem Studium mit den quantenoptischen Eigenschaften von Licht und seiner Wechselwirkung mit...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Künstliche Intelligenz findet das optimale Werkstoffrezept

Die möglichen Eigenschaften nanostrukturierter Schichten sind zahllos – wie aber ohne langes Experimentieren die optimale finden? Ein Team der Materialforschung der Ruhr-Universität Bochum (RUB) hat eine Abkürzung ausprobiert: Mit einem Machine-Learning-Algorithmus konnten die Forscher die strukturellen Eigenschaften einer solchen Schicht zuverlässig vorhersagen. Sie berichten in der neuen Fachzeitschrift „Communications Materials“ vom 26. März 2020.

Porös oder dicht, Säulen oder Fasern

Im Focus: Erdbeben auf Island über Telefonglasfaserkabel registriert

Am 12. März 2020, 10.26 Uhr, ereignete sich in Südwestisland, ca. 5 km nordöstlich von Grindavík, ein Erdbeben mit einer Magnitude von 4.7, während eines längeren Erdbebenschwarms. Wissenschaftlerinnen und Wissenschaftler des Deutschen GeoForschungsZentrums GFZ haben jetzt dort ein neues Verfahren zur Überwachung des Untergrunds mithilfe von Telefonglasfaserkabeln getestet.

Ein von GFZ-Forschenden aus den Sektionen „Oberflächennahe Geophysik“ und „Geoenergie“ durchgeführtes Online-Monitoring, das Glasfaserkabel des isländischen...

Im Focus: Quantenoptiker zwingen Lichtteilchen, sich wie Elektronen zu verhalten

Auf der Basis theoretischer Überlegungen von Physikern der Universität Greifswald ist es Mitarbeitern der AG Festkörperoptik um Professor Alexander Szameit an der Universität Rostock gelungen, photonische topologische Isolatoren als Lichtwellenleiter zu realisieren, in denen sich Photonen wie Elektronen verhalten, und somit fermionische Eigenschaften zeigen. Ihre Entdeckung wurde jüngst im renommierten Fachblatt „Nature Materials“ veröffentlicht.

Dass es elektronische topologische Isolatoren gibt – Festkörper die im Innern den elektrischen Strom nicht leiten, dafür aber umso besser über die Oberfläche –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

“4th Hybrid Materials and Structures 2020” findet web-basiert statt

26.03.2020 | Veranstaltungen

Wichtigste internationale Konferenz zu Learning Analytics findet statt – komplett online

23.03.2020 | Veranstaltungen

UN World Water Day 22 March: Water and climate change - How cities and their inhabitants can counter the consequences

17.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltweit einzigartig: Neue Anlage zur Untersuchung von biogener Schwefelsäurekorrosion in Betrieb

27.03.2020 | Architektur Bauwesen

Schutzmasken aus dem 3D-Drucker

27.03.2020 | Materialwissenschaften

Nachwuchswissenschaftler der Universität Rostock erfinden einen Trichter für Lichtteilchen

27.03.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics