Evolution kann Erbgut schnell verkleinern

Man sollte meinen, dass zwei eng verwandten Pflanzenarten ähnliche genetische Baupläne zugrunde liegen. Doch nun haben Wissenschaftler des Max-Planck-Instituts für Entwicklungsbiologie in Tübingen zusammen mit einem internationalen Forscherteam erstmals das gesamte Erbgut der Leierblatt-Felsenkresse (Arabidopsis lyrata) entschlüsselt, einer engen Verwandten der Modellpflanze der Genetiker, der Ackerschmalwand (Arabidopsis thaliana).

Danach ist das Genom der Leierblatt-Felsenkresse um die Hälfte größer als das der Ackerschmalwand. Die Unterschiede haben sich in evolutionär recht kurzer Zeit herausgebildet. Mit der neuen, qualitativ hochwertigen Genomanalyse ist die Basis gelegt für weitere detaillierte Vergleichsstudien zur Funktion, Ökologie und Evolution der Pflanzengattung Arabidopsis.

Die Größe des Genoms variiert bei verschiedenen Arten im Pflanzenreich stark. Als Extreme des bisher bekannten Spektrums nennen Wissenschaftler die Einbeere (Paris), deren Genom gut tausendfach so lang ist wie das der fleischfressenden Reusenfalle (Genlisea). Doch ist die Verwandtschaft so weitläufig, dass sich kaum feststellen lässt, welche Kräfte der Evolution im Einzelnen gewirkt haben. Daher haben Forscher aus der Abteilung Molekularbiologie von Detlef Weigel am Max-Planck-Institut (MPI) für Entwicklungsbiologie in Tübingen zusammen mit einem internationalen Forscherteam eine Art aus dem engen Umfeld der Ackerschmalwand (Arabidopsis thaliana), der wohl bestuntersuchten Blütenpflanze in der Genetik, für Evolutionsuntersuchungen ausgewählt. Die Wahl fiel auf die Leierblatt-Felsenkresse (Arabidopsis lyrata), die sich, anders als die Ackerschmalwand, nicht selbst befruchten kann. „Ackerschmalwand und Leierblatt-Felsenkresse hatten noch vor rund zehn Millionen Jahren einen gemeinsamen Vorfahren, dann trennten sich ihre Entwicklungslinien“, erklärt Ya-Long Guo vom MPI für Entwicklungsbiologie.

Das Genom der Ackerschmalwand ist schon seit längerem vollständig entschlüsselt: Es umfasst eine Folge von 125 Millionen Basenpaaren, die auch als Buchstaben des genetischen Alphabets bezeichnet werden. Darunter sind 27.025 Gene, die sich auf fünf Chromosomen verteilen. Die Sequenzierung des Genoms eines nordamerikanischen Stamms der Leierblatt-Felsenkresse ergab nun für diese Art eine um mehr als die Hälfte längere Basenfolge, nämlich 207 Millionen Buchstaben. Allerdings gehen die Wissenschaftler davon aus, dass diese Buchstabenfolgen nicht in allen Bereichen sinnvolle Wörter und Texte ergeben, dass also die Zahl der Gene sich zwischen den beiden Arten der Kreuzblütengewächse nicht ganz so stark unterscheidet: rund 32.670 Gene sind es bei der Leierblatt-Felsenkresse – verteilt auf acht Chromosomen.

Die Wissenschaftler haben festgestellt, dass an einigen Stellen des Ackerschmalwandgenoms umfangreiche Teile entfallen sind. Doch der größere Teil der Unterschiede im Umfang des Genoms kommt durch Hunderttausende von kleinen Kürzungen zustande, die meist in Bereichen zwischen den Genen oder in beweglichen genetischen Elementen, den Transposons, aufgetreten sind. Bei der natürlichen Auswahl der Individuen, die sich besonders erfolgreich fortpflanzen, Selektion in der Sprache der Evolutionsforscher, scheint ein kleineres Genom Vorteile zu haben. Dafür spricht zum Beispiel dieses Detail der neuen Ergebnisse: Durch Selektion scheinen bei der Ackerschmalwand vor allem solche Transposons eliminiert zu werden, die negativ auf die umliegenden Gene wirken. Nach Erkenntnissen der Wissenschaftler gehen auch aktuell weiterhin Elemente aus dem Genom der Ackerschmalwand verloren. „Wir gehen davon aus, dass bei der Leierblatt-Felsenkresse die genetische Ausstattung der gemeinsamen Vorfahren weitgehend erhalten geblieben ist, auch sie hatten acht Chromosomen. Die Ackerschmalwand mit ihrem schlankeren Genom sehen wir als in der Evolution abgeleitete Form an“, sagt Ya-Long Guo.

Für den Tübinger Forscher war überraschend, um wie viel größer das Genom der Leierblatt-Felsenkresse gegenüber dem der Ackerschmalwand ist. Mit der Analyse haben die Forscher die Voraussetzungen für weitere Erkenntnisse darüber geschaffen, wie die Evolution auf der Ebene der Gene und Moleküle bei Pflanzen wirken kann.

An der Studie beteiligte Forscherinnen und Forscher des Max-Planck-Instituts für Entwicklungsbiologie:

Jun Cao, Stephan Ossowski, Korbinian Schneeberger, Ya-Long Guo und Detlef Weigel

Originalpublikation:
Tina T. Hu et. al.: The Arabidopsis lyrata genome sequence and the basis of rapid genome size change, Nature Genetics (10 April 2011), doi: 10.1038/ng.807
Ansprechpartner:
Prof. Dr. Detlef Weigel
Tel.: 07071 601- 1410
E-Mail: detlef.weigel@tuebingen.mpg.de
Janna Eberhardt
Pressereferentin
Tel.: 07071 601-444
E-Mail: presse@tuebingen.mpg.de
Das Max-Planck-Institut für Entwicklungsbiologie betreibt Grundlagenforschung auf den Gebieten der Biochemie, Molekularbiologie, Genetik sowie Zell- und Evolutionsbiologie. Es beschäftigt rund 325 Mitarbeiterinnen und Mitarbeiter und hat seinen Sitz auf dem Max-Planck-Campus in Tübingen. Das MPI für Entwicklungsbiologie ist eines der 80 Institute und Forschungseinrichtungen der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Media Contact

Max-Planck-Institut

Weitere Informationen:

http://eb.mpg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer