Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Etappensieg mit Antikörpern

28.10.2010
Bakterien, die gegen Antibiotika resistent sind, stellen vor allem für kranke und geschwächte Menschen eine Bedrohung dar. Bei der Suche nach neuen Medikamenten haben Wissenschaftler der Universität Würzburg einen ersten Erfolg erzielt.

In Europa erleiden jedes Jahr mehr als vier Millionen Patienten eine Infektion, während sie im Krankenhaus liegen – denn geschwächte Menschen sind dafür anfälliger als gesunde. Verantwortlich für die so genannten Krankenhausinfektionen ist meistens die Bakterienart Staphylococcus aureus.

Eine gewisse Berühmtheit hat in diesem Fall das Kürzel MRSA erreicht. Es steht für Staphylococcus-Bakterienstämme, die gegen das Antibiotikum Methicillin resistent sind und die sich auch mit anderen Wirkstoffen kaum noch bekämpfen lassen.

Staphylococcus aureus-Bakterien finden sich zwar auch auf der Haut vieler gesunder Menschen, wo sie in der Regel keine Beschwerden hervorrugen. Doch wenn die Erreger bei Patienten mit geschwächtem Immunsystem ins Körperinnere eindringen, verursachen sie kaum heilbare Entzündungen.

Eine Therapie gegen resistente Bakterien

Einen erfolgversprechenden Weg, solche Infektionen zu behandeln, haben jetzt Wissenschaftler der Universität Würzburg gemeinsam mit Kollegen vom Helmholtz-Zentrum für Infektionsforschung in Braunschweig entdeckt. Die Fachzeitschrift Antimicrobial Agents and Chemotherapy berichtet darüber in ihrer aktuellen Ausgabe.

„Es ist uns gelungen, bei Mäusen mit der Hilfe von Antikörpern einen Abwehrmechanismus gegen Staphylococcus-Erreger zu aktivieren“, sagt Dr. Udo Lorenz von der Chirurgischen Klinik I der Universität. Gemeinsam mit dem Privatdozenten Dr. Knut Ohlsen vom Institut für Molekulare Infektionsbiologie verfolgt er bereits seit einigen Jahren die Idee, Antibiotika-resistente Bakterien mit Antikörpern zu bekämpfen.

Wie Antikörper arbeiten

Das Prinzip dahinter: Bestimmte Eiweißstoffe, sogenannte Antikörper, sind in der Lage, sich an eine ganz bestimmte Stelle an der Oberfläche des Bakteriums anzulagern. Dort können sie unterschiedliche Effekte hervorrufen: Im schlechten Fall keinen. In der besseren Variante neutralisieren sie das Bakterium, so dass es nicht mehr aktiv werden kann. Und in der besten Version bringen sie das körpereigene Immunsystem dazu, die Bakterien zu vernichten.

Die Immuneffektorzellen zu aktivieren: Das ist Lorenz und Ohlsen mit einem von ihnen entwickelten Antikörper jetzt bei Mäusen gelungen. „Wir konnten zeigen, dass die Rate der abgetöteten Bakterien nach der Gabe des Antikörpers um 30 Prozent gestiegen ist“, sagt Lorenz. 30 Prozent: ein „ganz dramatischer Vorteil, der den Unterschied zwischen Sterben und Überleben ausmachen kann“, so der Mediziner.

Der Schritt von der Maus zum Menschen

Im nächsten Schritt ihrer Arbeit wollen die Forscher nun den Antikörper aus der Maus auf den Menschen übertragen. Damit es nicht zu unerwünschten Abstoßungsreaktionen kommt, muss dazu das gesamte Molekül „humanisiert“ werden. „Wir nehmen nur die Stelle des Antikörpers, die an das Bakterium andockt, und bauen den Rest des Moleküls künstlich auf, so dass es für Menschen geeignet ist“, sagt Lorenz.

Ist das geschehen, wollen die beiden Wissenschaftler möglichst bald mit den entsprechenden Studien beginnen. Läuft alles nach Plan, rechnet Lorenz für Ende 2012 mit der ersten klinischen Studie.

Gründung einer Firma geplant

Für ihre Forschung an einer neuen Immuntherapie zur Behandlung von Krankenhausinfektionen mit resistenten Staphylococcus-aureus-Bakterien planen Lorenz und Ohlsen in Kürze ihre eigene Firma zu gründen: SmartmAb

SmartmAb soll den Mausantikörper für den Einsatz am Menschen weiterentwickeln, bis hin zur ersten klinischen Prüfung als Medikament. Die folgenden Schritte bis zur Marktreife wollen die Wissenschaftler mit einem Partner aus der Pharmaindustrie tun. Langfristig ist die Gründung eines Unternehmens geplant, das – aufbauend auf den ersten Antikörpern – weitere Immuntherapeutika gegen Infektionserreger erarbeiten soll.

Finanzielle Unterstützung erhalten die Firmengründer dabei vom Bundesministerium für Bildung und Forschung. Im Rahmen des GO-Bio-Wettbewerbs konnten sie sich gegen 54 Antragsteller durchsetzen und bekommen nun rund drei Millionen Euro, um damit ihre Idee zum marktreifen Produkt vorantreiben zu können.

“Functional antibodies targeting IsaA of Staphylococcus aureus augment host immune response and open new perspectives for antibacterial therapy”. Udo Lorenz, Birgit Lorenz, Tim Schmitter, Karin Streker, Christian Erck, Jürgen Wehland, Joachim Nickel, Bastian Zimmermann and Knut Ohlsen. Antimicrobial Agents and Chemotherapy, doi:10.1128/AAC.01144-10

Kontakt
Dr. Udo Lorenz, T (0931) 201 38314, u.lorenz@mail.uni-wuerzburg.de
PD Dr. Knut Ohlsen, T (0931) 31-82155, knut.ohlsen@mail.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ein neues Mittel gegen Zöliakie
24.09.2018 | Technische Universität Wien

nachricht Zika und Gelbfieber: Impfstoffe ohne Ei
21.09.2018 | Max-Planck-Institut für Dynamik komplexer technischer Systeme Magdeburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ein neues Mittel gegen Zöliakie

24.09.2018 | Biowissenschaften Chemie

Entscheidung über Attraktivität fällt in Millisekunden

24.09.2018 | Studien Analysen

Künstliche Intelligenz im Fokus – Schulungsangebot zum maschinellen Lernen für Industrie und Forschung startet

24.09.2018 | Seminare Workshops

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics