Es braucht mehr als einen globalen Eindruck, um einen Fisch zu bewegen

Zebrafische orientieren sich an lokalen und globalen Anhaltspunkten, um ein mögliches Abdriften zu bemerken – und nutzen dabei wohl auch einen Schaltkreis, mit dem der Fisch Räuber erkennen kann. (c) MPI für Neurobiologie, Julia Kuhl

Es kann eine Herausforderung sein, am gleichen Ort zu bleiben, wenn sich die Umwelt bewegt. Hierbei handelt es sich um ein alltägliches Phänomen: „Wenn wir uns vorwärtsbewegen, zieht das Bild der Umgebung an den Augen vorbei nach hinten“, erklärt Andreas Kist vom Max-Planck-Institut für Neurobiologie den „optischen Fluss“.

Der Mensch und viele Tierarten nutzen diese Information, um ihre eigenen Bewegungen zu erkennen und bei Bedarf zu korrigieren.

Wird zum Beispiel ein Fisch von der Strömung abgetrieben, bewegt er sich in die gleiche Richtung des optischen Flusses, um am gleichen Ort zu bleiben. Diese „optomotorische Reaktion“ ist bei vielen Tierarten angeboren.

Forscher untersuchen an ihr, wie das Gehirn visuelle Informationen verarbeitet und in eigene Bewegungen umsetzt. An welchen Punkten das Gehirn jedoch genau festmacht, dass sich die Umwelt bewegt und in welche Richtung, ist unklar. „Das wollten wir ändern und sind dabei gleich auf eine ganz unerwartete, lokale Komponente gestoßen“, erklärt Ruben Portugues, der Leiter der Studie.

Kist und Portugues zeigten Zebrafischlarven verschiedene visuelle Muster, die sich unter ihnen entlang bewegten. Zogen die Muster durch den ganzen Sichtbereich der Tiere von hinten nach vorne löste dies, wie erwartet, eine Vorwärts-Schwimmbewegung aus.

So würden die Fische ein Abdriften nach hinten vermeiden. Dabei war es egal, ob sich helle Muster auf einem dunklen Grund bewegten oder anders herum. Wie ausgeprägt die Reaktion war und wann sie eintrat, hing jedoch von einem ganz anderen Faktor ab.

Die Untersuchungen zeigten, dass die ausgleichenden Schwimmbewegungen deutlich zuverlässiger auftreten, wenn zusätzlich ein dunkler Bereich lokal am Fischkopf vorbeizieht. Die Geschwindigkeit und die Art des dunklen Bereichs hatte dabei einen entscheidenden Einfluss darauf, wann und wie sich die Zebrafischlarven bewegten. Kamen der globale und lokale Auslöser zusammen, war die optomotorische Reaktion sehr stark und zuverlässig.

Basierend auf dem, was über das Verarbeiten von visuellen Reizen bekannt ist, kann es sich hier um zwei unabhängige Pfade im Gehirn handeln. Der eine Weg verarbeitet die globalen, der andere Pfad die lokalen Eindrücke. „Eventuell haben wir auch schon eine Idee, wie die lokale Komponente verarbeitet wird“, überlegt Portugues.

Vor einiger Zeit konnten Max-Planck-Wissenschaftler zeigen, wie ein dunkles, herannahendes Objekt eine Fluchtreaktion bei Zebrafischen auslöst. „Wir haben hier eine sehr interessante Parallele“, so Portugues. Auch bei der neu beschriebenen Komponente der optomotorischen Rekation löst ein dunkles Objekt eine Bewegung aus. Nur eben keine Flucht, sondern eine gezielte Schwimmbewegung.

„Es ist denkbar, dass das Gehirn diesen Verarbeitungspfad je nach Bedarf für beide Situationen verwendet“, überlegt Ruben Portugues. „Das ist sicher etwas, das wir uns noch genauer anschauen werden.“

KONTAKT
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Am Klopferspitz 18
82152 Martinsried
E-Mail: merker@neuro.mpg.de
Tel.: 089 8578 3514

Dr. Ruben Portugues
Max-Planck-Forschungsgruppe Sensomotorische Kontrolle
Max-Planck-Institut für Neurobiologie
E-Mail: rportugues@neuro.mpg.de

Andreas M. Kist, Ruben Portugues
Optomotor swimming in larval zebrafish is driven by global whole-field visual motion and local light-dark transitions
Cell Reports, online am 15. Oktober 2019

http://www.neuro.mpg.de – Webseite des MPI für Neurobiologie

Media Contact

Dr. Stefanie Merker Max-Planck-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer