Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ertappt: Mikrobielle „Methanfresser“ im Meeresboden nutzen Gasblasen zum Aufstieg in der Wassersäule

30.07.2015

Neuartiges Instrument zum Auffangen von Gasblasen (bubble catcher) liefert erste Beweise für einen bisher unbeachteten Transportprozess, der für die Reduktion des Klimagases Methan in der marinen Umwelt Bedeutung haben kann.

Um die Rolle von Mikroorganismen im Prozess der Methanregulierung im Meer besser zu verstehen, entwickelten Wissenschaftler vom Leibniz-Institut für Ostseeforschung Warnemünde (IOW) ein neues Gerät, mit dem sich der Transport dieser Organismen durch vom Meeresboden aufsteigende Methanblasen in die Wassersäule erfassen lässt.


Einsatz des IOW-Bubble-Catchers vor der Küste Kaliforniens: Projektleiter Oliver Schmale (r.) mit den Team-Kollegen Jens Schneider v. Deimling (GEOMAR, Kiel, links) und Katrin Kießlich (IOW, Mitte).

IOW


Blasenauffangtrichter des IOW-Bubble-Catchers über einer der Methanaustrittsstellen des Untersuchungsgebietes

University of California

Mit diesem sogenannten „Bubble Catcher“ gelang nun erstmals der Nachweis, dass Methan-konsumierende Bakterien tatsächlich auf diesem Weg aus dem Sediment ins freie Wasser gelangen. Dieser Transportprozess kann somit von Bedeutung für die Reduktion des Klimagases Methan in der marinen Umwelt und damit für das Klimageschehen auf der Erde sein.

Zu verstehen, auf welchem Wege Methan in die Atmosphäre gelangt und welche Prozesse das verhindern können, ist ein wichtiges Ziel der Umweltforschung. Auch in der Meeresforschung sind weltweit Methanquellen wie untermeerische Schlammvulkane, Kohlenwasserstoff-Austrittsgebiete (Seeps) und die Organik-reichen Sedimente in Randmeeren wie der Ostsee im Fokus der Untersuchungen. Marine Methanquellen sind zahlreich und vielfältig.

Auf dieses umfangreiche Angebot haben sich Mikroorganismen spezialisiert: So nutzen vor allem Methan-oxidierende Bakterien im Freiwasser und methanotrophe Archaeen am Meeresboden Methan als Energie- und Kohlenstoffquelle. Dabei wandeln sie es in Karbonate und Biomasse oder in das im Vergleich zum Methan weniger potente Treibhausgas Kohlendioxid um.

Dieser effektive Prozess verhindert normalerweise, dass Methan aus dem Meeresboden bis an die Wasseroberfläche und damit auch in die Atmosphäre gelangt. Wenn jedoch so viel Methan austritt, dass es in Form von Gasblasen vom Meeresboden aufsteigt, funktioniert der mikrobielle Methanfilter im Sediment und in der Wassersäule nicht mehr: Die hohe Geschwindigkeit der Blasen führt das Methan zu rasch an den Zonen vorbei, in denen die Methan-umsetzenden Mikroorganismen leben.

Aus anderen aquatischen Umgebungen wie z. B. dem Grundwasser ist bekannt, dass Blasen an ihrer Außenhaut Mikroorganismen transportieren können. Unbeachtet blieb aber bislang der blasenvermittelte Transport zwischen Sediment und Wassersäule. Dies war der Ansatzpunkt für das Team der IOW-WissenschaftlerInnen um den Meereschemiker Oliver Schmale und seinen KollegInnen vom Kieler GEOMAR sowie der University of California, die mit dem extra für diesen Zweck entwickelten Bubble Catcher untersuchen wollten, ob methanotrophe Bakterien im Sediment über ein Anheften an die Gasblasenhaut am Aufstiegsprozess der Gasblasen teilnehmen und ob auf diesem Wege das umgebende Wasser kontinuierlich mit diesen Organismen geimpft wird.

Der Nachweis eines solchen Prozesses ist allerdings nicht einfach, da die Gasblasen und die daran anheftenden Mikroorganismen möglichst kontaminationsfrei an der Blasenaustrittsstelle eingefangen werden müssen. Während einer Pilot Studie vor der Küste Kaliforniens gelang es dem Forscherteam jedoch nun erstmals, über einem natürlichen Methan-Austritt die entweichenden Blasen in dem mit künstlichem, sterilen Meerwasser gefüllten Zylinder des Bubble Catchers einzufangen. Durch anschließende mikroskopische Analysen (CARD-FISH) wiesen sie nach, dass Methan-oxidierende Bakterien die Methanblasen begleiteten.

Oliver Schmale: „Wir wissen jetzt, dass methanotrophe Bakterien aus dem Sediment die Gasblasen tatsächlich als ‚Mitfahrgelegenheit‘ nutzen und so in die umgebende Wassersäule transportiert werden. Weitere Untersuchungen müssen nun zeigen, ob die Bakterien nach ihrem Umgebungswechsel weiterhin in der Wassersäule aktiv bleiben und so den Transport des Treibhausgases in die Atmosphäre vermindern.“

Publiziert wurden die von der Deutschen Forschungsgemeinschaft (DFG) finanzierten Arbeiten kürzlich in der Fachzeitschrift Continental Shelf Research:
Schmale, O., I. Leifer, J. S. v. Deimling, C. Stolle, S. Krause, K. Kießlich, A. Frahm and T. Treude (2015). Bubble transport mechanism: indications for a gas bubble-mediated inoculation of benthic methanotrophs into the water column. Cont. Shelf Res. 103: 70-78, doi:10.1016/j.csr.2015.04.022

*Kontakt:
Dr. Oliver Schmale, Sektion Meereschemie, Leibniz-Institut für Ostseeforschung Warnemünde, Tel.: 0381 5197 305, oliver.schmale@io-warnemuende.de

Dr. Barbara Hentzsch, Presse- und Öffentlichkeitsarbeit, Leibniz-Institut für Ostseeforschung Warnemünde, Tel.: 0381 – 5197 102, barbara.hentzsch@io-warnemuende.de

Das IOW ist Mitglied der Leibniz-Gemeinschaft, zu der zurzeit 89 Forschungsinstitute und wissenschaftliche Infrastruktureinrichtungen für die Forschung gehören. Die Ausrichtung der Leibniz-Institute reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts-, Sozial- und Raumwissenschaften bis hin zu den Geisteswissenschaften. Bund und Länder fördern die Institute gemeinsam. Insgesamt beschäftigen die Leibniz-Institute etwa 18.100 MitarbeiterInnen, davon sind ca. 9.200 WissenschaftlerInnen. Der Gesamtetat der Institute liegt bei mehr als 1,64 Mrd. Euro. (http://www.leibniz-gemeinschaft.de)

Dr. Barbara Hentzsch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics