Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ersthelfer am Ground Zero: Wie Mikrogliazellen im Gehirn verletzte Stellen lokalisieren

25.05.2012
Sie verhalten sich im Prinzip wie Rettungskräfte, die an den Ort einer Katastrophe eilen: die sogenannten Mikrogliazellen sind unverzüglich zur Stelle, wenn eine Verletzung im Gehirn vorliegt.

Und sie beheben den Schaden, indem sie verletzte Zellen sowie sterbende oder bereits tote Neuronen einfach “aufessen”. Wissenschaftler am Europäischen Laboratorium für Molekularbiologie (EMBL) in Heidelberg, Deutschland, haben nun erstmals herausgefunden, wie Mikroglia eine verletzte Stelle im Gehirn mithilfe einer Stafette molekularer Signale lokalisieren. Die Ergebnisse der Studie, die heute in der Fachzeitschrift Developmental Cell veröffentlicht werden, bereiten den Weg für neue medizinische Ansätze. Dies gilt vor allem für Erkrankungen, bei denen die Fähigkeit der Mikroglia eingeschränkt ist, diese gefährlichen Zellen und anderes schädliches Material im Gehirn zu identifizieren.

“Angesichts der Tatsache, dass Mikroglia einiges zur Gesunderhaltung unseres Gehirns beitragen, wissen wir erstaunlich wenig über sie,” so Francesca Peri, die Leiterin der Studie. “Es ist uns nun zum ersten Mal gelungen, den Mechanismus zu entschlüsseln, der es den Mikroglia ermöglicht, eine Verletzung im Gehirn zu lokalisieren. Außerdem haben wir herausgefunden, wie ein Notruf von Neuron zu Neuron weitergeleitet wird.”

Normalerweise werden im Falle einer Katastrophe Außenstehende zunächst durch Schreie alarmiert und informieren dann die Rettungskräfte. Über Funk wird die Nachricht weiter verbreitet, woraufhin Krankenwagen und Einsatzkräfte der Polizei oder Feuerwehr, die sich in der Nähe aufhalten, je nach Bedarf zum Unfallort eilen. Im Gehirn, so fanden Peri und ihre Kollegen heraus, setzen verletzte Neuronen ihren ganz eigenen Hilfeschrei ab, indem sie ein Molekül namens Glutamat freisetzen. Benachbarte Neuronen erkennen das Glutamat und reagieren darauf, indem sie Kalzium aufnehmen. Da sich das Glutamat so von der verletzten Stelle her immer weiter ausbreitet, entsteht eine wellenartige Aufnahme von Kalzium durch die Neuronen, wodurch ein drittes Molekül, das sogenannte ATP, freigesetzt wird. Sobald die Welle eine Mikrogliazelle erreicht, erkennt diese das ATP und handelt daraufhin unverzüglich: Sie bewegt sich in die entsprechende Richtung, indem sie im Prinzip die Welle bis zu ihrem Ausgangspunkt zurückverfolgt.

Den Wissenschaftlern war bereits bekannt, dass Mikroglia ATP erkennen können. Da dieses Molekül ausserhalb der Zelle jedoch sehr instabil ist, bestanden bisher Zweifel, ob ATP allein als Signalsubstanz wirklich stark genug wäre, auch Mikroglia zu erreichen, die sich weiter entfernt vom Ort des Geschehens befinden. Im Laufe der Forschungsarbeiten entdeckten Peri und ihre Kollegen, dass bei der Signalübermittlung ein Trick angewandt wird: eine langanhaltende glutamatgesteuerte Kalziumwelle, die sich durch das gesamte Gehirn bewegen kann. Dank dieser Kaskade wird das ATP-Signal nicht nur von den verletzten Zellen ausgesendet sondern von allen Neuronen entlangs des Wegs, solange, bis die Mikroglia erreicht werden.

Dirk Sieger und Christian Moritz aus der Forschungsgruppe von Francesca Peri machten sich bei ihrer Arbeit den Umstand zunutze, dass die Köpfe der Zebrafische transparent sind, d.h. die Wissenschaftler konnten mit dem Mikroskop direkt in das Gehirn der Fische schauen. Sie verwendeten zunächst einen Laser, um einige Gehirnzellen gezielt zu verletzen und beobachteten dann fluoreszenz-markierte Mikroglia, wie sie sich auf die verletzten Zellen zubewegten. Auch nachdem sie Zebrafische genetisch so verändert hatten, dass der Kalziumspiegel der Neuronen unter dem Mikroskop nachweisbar war, konnten die Wissenschaftler bestätigen, dass die Mikroglia sich unverzüglich in Richtung Verletzung in Gang setzten, sobald die Kalziumwelle sie erreicht hatte.

Das Wissen um die einzelnen Schritte in diesem Prozess und wie sie sich gegenseitig beeinflussen, könnte die Entwicklung neuer Therapien unterstützen, mit dem Ziel, die Erkennung durch die Mikroglia zu verbessern. Diese ist bei Erkrankungen wie z.B. Alzheimer und Parkinson nachhaltig gestört.

Veröffentlicht in Developmental Cell am 24. Mai 2012. DOI: 10.1016/j.devcel.2012.04.012.

Nutzungsbedingungen

EMBL Pressemitteilungen, Photos, Grafiken und Videos unterliegen dem EMBL copyright. Sie können für nicht-kommerzielle Nutzung frei reproduziert und verbreitet werden. Wir bitten um Nennung der Autoren und Institution. Hochauflösende Bilder können von folgender Internetseite heruntergeladen werden: www.embl.org.

Deutsch Kontakt:
Lena Raditsch
Meyerhofstr. 1, 69117 Heidelberg, Deutschland
Tel.: +49 (0)6221 387 8443
Fax: +49 (0)6221 387 8525
lena.raditsch@embl.de
Sonia Furtado Neves
EMBL Press Officer
Meyerhofstr. 1, 69117 Heidelberg, Germany
Tel.: +49 (0)6221 387 8263
Fax: +49 (0)6221 387 8525
sonia.furtado@embl.de

Sonia Furtado Neves | EMBL Research News
Weitere Informationen:
http://www.embl.org

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Tief in die Zelle geblickt
05.08.2020 | Technische Universität Berlin

nachricht Tellur macht den Unterschied
05.08.2020 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrogesponnene Vliese mit gerichteten Fasern für die Sehnen- und Bänderrekostruktion

Sportunfälle und der demografische Wandel sorgen für eine gesteigerte Nachfrage an neuen Möglichkeiten zur Regeneration von Bändern und Sehnen. Eine Kooperation aus italienischen und deutschen Wissenschaftler*innen forschen gemeinsam an neuen Materialien, um dieser Nachfrage gerecht zu werden.

Dem Team ist es gelungen elektrogesponnene Vliese mit hochgerichteten Fasern zu generieren, die eine geeignete Basis für Ersatzmaterialien für Sehnen und...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: Neue Strategie gegen Osteoporose

Ein internationales Forschungsteam hat einen neuen Ansatzpunkt gefunden, über den man möglicherweise den Knochenabbau bei Osteoporose verringern und die Knochengesundheit erhalten kann.

Die Osteoporose ist die häufigste altersbedingte Knochenkrankheit. Weltweit sind hunderte Millionen Menschen davon betroffen. Es wird geschätzt, dass eine von...

Im Focus: Lastenfahrräder: Leichtbaupotenziale erkennen und nutzen

Lastenräder sind »hipp« und ein Symbol für klimafreundliche Mobilität, tagtäglich begegnen wir ihnen. Straßen und Radwege müssen an diese neue Fahrzeugkategorie angepasst werden. Aber nicht nur die Infrastruktur kann optimiert werden, Lastenräder selbst bieten noch reichlich Potenzial. Im neu gestarteten Projekt »LastenLeichtBauFahrrad« (L-LBF) suchen Wissenschaftlerinnen und Wissenschaftler des Fraunhofer-Instituts für Betriebsfestigkeit und Systemzuverlässigkeit LBF zusätzliche Leichtbaupotenziale dieser urbanen Vehikel. Über die Fortschritte des Projekts informiert eine eigene Webseite unter www.lbf.fraunhofer.de/L-LBF 

Form und Design von Lastenfahrrädern variieren von schnittig schick bis kastig oder tonnig. Sie stellen das neue Statussymbol der »mittleren Generation« dar....

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovationen der Luftfracht: 5. Air Cargo Conference real und digital

04.08.2020 | Veranstaltungen

T-Shirts aus Holz, Möbel aus Popcorn – wie nachwachsende Rohstoffe fossile Ressourcen ersetzen können

30.07.2020 | Veranstaltungen

Städte als zukünftige Orte der Nahrungsmittelproduktion?

29.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tief in die Zelle geblickt

05.08.2020 | Biowissenschaften Chemie

Tellur macht den Unterschied

05.08.2020 | Biowissenschaften Chemie

Humane zellbasierte Testsysteme für Toxizitätsstudien: Ready-to-use Tox-Assay (hiPS)

05.08.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics