Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erster Zufallslaser aus papierbasierten Keramiken

10.11.2016

Den ersten steuerbaren Zufallslaser auf der Basis von Zellstoffpapier hat ein Team um Professor Cordt Zollfrank von der Technischen Universität München (TUM) zusammen mit Physikern der Universität Rom hergestellt. Das Team belegt, wie aus natürlich vorkommenden Strukturen eine technische Anwendung entstehen kann. Somit müssen künftig keine Materialien mehr künstlich mit ungeordneten Strukturen versehen werden, sondern es kann auf natürlich vorkommende zurückgegriffen werden.

Die von der Biologie inspirierte Materialsynthese ist ein Forschungsbereich am Lehrstuhl für Biogene Polymere der TUM am Wissenschaftszentrum Straubing: Dabei werden Modelle aus der Natur übertragen und biogene Materialien zur Entwicklung neuer Werkstoffe oder Technologien verwendet.


Für ihren Zufallslaser verwendeten die Wissenschaftler gewöhnliches Labor-Filterpapier wegen seiner langen Fasern und stabilen Struktur.

Foto: Institute for Complex Systems /Rom

In der aktuellen Ausgabe der Publikation ‚Advanced Optical Materials’ wird eine Grundlagenstudie vorgestellt, bei der es einem Team aus Straubing und Rom gelungen ist, „eine biologische Struktur als Vorlage für einen technischen Zufallslaser zu verwenden", sagt Wissenschaftler Dr. Daniel Van Opdenbosch.

Bei einem Laser sind zwei Komponenten notwendig: Einmal ein Medium, welches Licht verstärkt. Zum anderen eine Struktur, welche das Licht im Medium hält. Während ein klassischer Laser über Spiegel geordnet zielgerichtet in eine Richtung leuchtet und zwar einheitlich, passiert dies bei der winzigen Struktur eines Zufallslasers zwar auch einheitlich, jedoch in die verschiedensten Richtungen.

Die Entwicklung der Zufallslaser steckt zwar noch in den Anfängen, aber sie könnten einmal für kostengünstigere Produktionen sorgen, zudem haben Zufallslaser den Vorteil, dass sie richtungsunabhängig und mehrfarbig funktionieren, um nur einige Vorteile zu nennen.

Unordnung der Struktur sorgt für Ablenkung des Lichts in alle Richtungen

„Die Voraussetzung für einen Zufallslaser ist ein definiertes Maß an struktureller Unordnung im Inneren“, erklärt Van Opdenbosch. Das Licht im Zufallslaser wird folglich entlang zufälliger Pfade kreuz und quer gestreut, die bedingt sind durch eine unregelmäßige Strukturierung im Inneren des Mediums. Das Team um Professor Zollfrank vom Lehrstuhl für Biogene Polymere in Straubing setzte als Strukturvorlage gewöhnliches Labor-Filterpapier ein. „Wegen seiner langen Fasern und der daraus resultierenden stabilen Struktur erschien es uns als geeignet“, sagt Van Opdenbosch.

Im Labor wurde das Papier mit Tetraethylorthotitanat, einer metallorganischen Verbindung, imprägniert. Diese bildet beim Trocknen und anschließenden Ausbrennen des Zellstoffs bei 500 Grad Celsius als Rückstand die Keramik Titandioxid – ein Material, das üblicherweise in Sonnencremes für den Lichtschutz sorgt.

„Der Effekt in Sonnencremes basiert auf der starken Streuung von Licht an Titandioxid“, sagt Van Opdenbosch – „was wir auch für unseren Zufallslaser brauchten.“ Und „unser Laser ist insofern 'zufällig', weil das – über die biogene Struktur des Labor-Filterpapiers – in verschiedene Richtungen abgelenkte Licht auch in die Gegenrichtung gestreut werden kann“, beschreibt Daniel Van Opdenbosch das Prinzip.

Zufallslaser doch nicht so zufällig

Dass die Lichtwellen bei aller Zufälligkeit dennoch steuerbar sind, haben wiederum Kolleginnen und Kollegen um Professor Claudio Conti vom Institut für Komplexe Systeme des Italienischen Nationalen Forschungsrates in Rom herausgefunden, mit denen Daniel Van Opdenbosch und Cordt Zollfrank kooperierten. Mit Hilfe eines Spektrometers konnten sie verschiedene im Material entstehende Laserwellenlängen unterscheiden und getrennt voneinander lokalisieren.

„Der Versuchsaufbau, mit dem die Proben kartiert wurden, bestand aus einem grünen Laser, dessen Energie verändert werden konnte, aus Mikroskopielinsen und einem mobilen Tisch, mit dem die Probe abgefahren werden konnte“, beschreibt Van Opdenbosch das Vorgehen.

„Damit konnten die Kollegen herausfinden, dass bei verschiedenen Energielevels unterschiedliche Bereiche des Materials verschiedene Laserwellen ausstrahlen.“ So analysiert, ist es möglich, den Laser nach Belieben einzustellen und zu bestimmen, in welche Richtung und mit welcher Helligkeit er strahlt.

Damit rücken Möglichkeiten praktischer Anwendung in greifbare Nähe. "Solche Materialien können beispielsweise als Mikro-Schalter oder Detektoren für strukturelle Änderungen nützlich sein", sagt Van Opdenbosch.

Publikation:
Ghofraniha, Neda, Luca La Volpe, Daniel Van Opdenbosch, Cordt Zollfrank, and Claudio Conti: Biomimetic Random Lasers with Tunable Spatial and Temporal Coherence, Advanced Optical Materials, September 2016. doi:10.1002/adom.201600649.

http://onlinelibrary.wiley.com/doi/10.1002/adom.201600649/full

Kontakt

Technische Universität München
Wissenschaftszentrum Straubing
Professur für Biogene Polymere
Professor Cordt Zollfrank
+49 (9421) 187 - 450
cordt.zollfrank@tum.de
http://www.wz-straubing.de

Dr. Daniel Van Opdenbosch
+49 (8161) 984 - 452
daniel.van-opdenbosch@tum.de

Weitere Informationen:

https://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/33517/

Dr. Ulrich Marsch | Technische Universität München

Weitere Berichte zu: Biogene Keramiken Komplexe Systeme Laser Licht Polymere Random Titandioxid Zufallslaser

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Betazellfunktion im Tiermodell wiederhergestellt: Neue Wirkstoffkombination könnte Diabetes-Remission ermöglichen
21.02.2020 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Darmkrebs: Erhöhte Lebenserwartung dank individueller Therapien
20.02.2020 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics