Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erste Filmaufnahmen von Kernporen

03.05.2016

Mithilfe eines extrem schnellen und präzisen Rasterkraftmikroskops haben Forscher der Universität Basel erstmals «lebendige» Kernporenkomplexe bei der Arbeit gefilmt. Kernporen sind molekulare Maschinen, die den Verkehr in und aus dem Zellkern kontrollieren. In ihrem kürzlich in «Nature Nanotechnology» publizierten Artikel erklären die Forscher, wie bewegliche «Tentakeln» in der Pore die Passage von unerwünschten Molekülen verhindern.

Das Rasterkraftmikroskop (AFM) ist kein Mikroskop zum Durchschauen. Es tastet wie ein Blinder mit seinen Fingern die Oberflächen mit einer extrem feinen Spitze ab und kann so selbst millionstel Millimeter kleine zelluläre Strukturen erkennen.


Videoaufnahmen mit Hochgeschwindigkeits-AFM zeigen native Kernporenkomplexe bei der Arbeit; der Massstabsbalken beträgt 10 Nanometer.

Universität Basel

So auch die Poren in der Hülle des Zellkerns. Normalerweise ist diese Messung langsam und benötigt für die Aufnahme eines einzelnen Bildes bis zu einer Minute. Moderne Hochgeschwindigkeits-AFM nehmen dagegen mehrere hundert Bilder pro Minute auf und können so Moleküle in Aktion filmen.

Mithilfe eines solchen Geräts konnte Roderick Lim, Argovia-Professor am Biozentrum und dem Swiss Nanoscience Institut der Universität Basel, nun nicht nur die selektive Barriere der Kernporen, sondern auch ihr dynamisches Verhalten sichtbar machen. Damit gelang es den Forschern, das langjährige Mysterium, wie unerwünschten Molekülen der Einlass zum Zellkern verwehrt wird, zu enträtseln.

Kernporenkomplexe steuern Passage von Molekülen

Die Struktur von Kernporen ist seit langem bekannt. Dabei handelt es sich nicht um einfache Löcher, sondern um wichtige Verkehrsknotenpunkte, die zu Tausenden die Hülle des Zellkerns durchziehen. Sie bestehen aus etwa 30 verschiedenen als Nukleoporine bezeichneten Proteinen, die einen Ring mit einem Transportkanal bilden.

Innerhalb der Pore bilden mehrere ungeordnete Proteine (FG-Nup) eine selektive, mit einem Filter vergleichbare Barriere. Während kleine Moleküle diese Barriere passieren können und so ins Kerninnere gelangen, werden grosse Proteine dagegen aufgehalten. Eine Ausnahme stellen Proteine dar, die im Zellkern zum Beispiel für die Reparatur oder Verdoppelung der Erbinformation gebraucht werden. Sie tragen ein spezielles «Adressschild» und werden mithilfe von Transportproteinen durch die Pore in den Zellkern geschleust.

Superschnelles AFM offenbart dynamische Vorgänge

«Mit dem Hochgeschwindigkeits-AFM konnten wir das erste Mal in die nur 40 Nanometer grossen Kernporenkomplexe hineinschauen», erklärt Lim. «Diese Methode ist wirklich bahnbrechend, denn damit konnten wir die einzelnen FG-Nups sehen und sie in Action filmen. Das war zuvor unmöglich!»

Um in das Innere der Pore hineinzugelangen, musste Yusuke Sakiyama, Doktorand in der Forschungsgruppe von Lim, auf jeder einzelnen Messspitze eine winzige Karbon-Nanofaser wachsen lassen. Mit den damit aufgenommenen Bildern, die zu kurzen Videosequenzen zusammenfügt wurden, konnten die Forscher nun erstmals die «lebensechte» Dynamik biologischer Vorgänge auf Nanoebene beobachten.

Barriere aus wogenden molekularen «Tentakeln»

Aufgrund der hohen räumlichen und zeitlichen Auflösung konnten die Forscher zeigen, dass die FG-Nup-Filamente sehr beweglich sind. «Es sind keine steifen Borsten, ganz im Gegenteil, wie dünnste Tentakeln schwingen sie, strecken oder ziehen sich zusammen oder verknäulen sich innerhalb der Pore», sagt Lim. Die Schnelligkeit ihrer Bewegungen entscheidet darüber, welche Moleküle die Pore passieren können.

«Die FG-Nups bewegen sich viel schneller als grosse Proteine und versperren ihnen so den Zugang zum Kernporenkomplex», so Lim. «Kleine Moleküle sind hingegen schneller und können daher die FG-Nup-Barriere überwinden.»

Mit dem Verständnis über die Funktionsweise der Kernporenkomplexe in lebenden Zellen möchte Lim, der Mitglied des Nationalen Forschungsschwerpunkts Molecular Systems Engineering ist, nun herausfinden, wie solche dem Kernporenkomplex nachempfundene selektive Filter den molekularen Verkehr in nicht-biologischen System regulieren könnten.

Originalbeitrag

Yusuke Sakiyama, Adam Mazur, Larisa E. Kapinos and Roderick Y.H. Lim
Spatiotemporal dynamics of the nuclear pore complex transport barrier resolved by high-speed atomic force microscopy
Nature Nanotechnology (2016), doi: 10.1038/nnano.2016.62

Weitere Auskünfte

Prof. Dr. Roderick Lim, Universität Basel, Biozentrum und Swiss Nanoscience Institute, Tel. +41 61 267 20 83, E-Mail: roderick.lim@unibas.ch

Dr. Katrin Bühler, Universität Basel, Kommunikation Biozentrum, Tel. +41 61 267 09 74, E-Mail: katrin.buehler@unibas.ch

Weitere Informationen:

http://www.biozentrum.unibas.ch/de/forschung/gruppen-plattformen/overview/unit/l... - Forschungsgruppe Prof. Roderick Lim
http://dx.doi.org/10.1038/nnano.2016.62 - Abstract

Dr. Katrin Bühler | Universität Basel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mitten ins Herz
24.06.2019 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Systeme stabil halten
21.06.2019 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Partielle Mondfinsternis am 16./17. Juli 2019

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde (VdS) und des Hauses der Astronomie in Heidelberg - Wie im letzten Jahr findet auch 2019 eine in den späten Abendstunden in einer lauen Sommernacht gut zu beobachtende Mondfinsternis statt, und zwar in der Nacht vom 16. auf den 17. Juli. Die Finsternis ist zwar nur partiell - der Mond tritt also nicht vollständig in den Erdschatten ein - es ist aber für die nächsten Jahre die einzige gut sichtbare Mondfinsternis im deutschen Sprachraum.

Am Dienstagabend, den 16. Juli, wird ein kosmisches Schauspiel zu sehen sein: Der Vollmond taucht zu einem großen Teil in den Schatten der Erde ein, es findet...

Im Focus: Fraunhofer IDMT zeigt akustische Qualitätskontrolle auf der Fachmesse für Messtechnik »Sensor + Test 2019«

Das Ilmenauer Fraunhofer-Institut für Digitale Medientechnologie IDMT präsentiert vom 25. bis 27. Juni 2019 am Gemeinschaftsstand der Fraunhofer-Gesellschaft (Stand 5-248) seine neue Lösung zur berührungslosen, akustischen Qualitätskontrolle von Werkstücken und Bauteilen. Da die Prüfung zerstörungsfrei funktioniert, kann teurer Prüfschrott vermieden werden. Das Prüfverfahren wird derzeit gemeinsam mit verschiedenen Industriepartnern im praktischen Einsatz erfolgreich getestet und hat das Technology Readiness Level (TRL) 6 erreicht.

Maschinenausfälle, Fertigungsfehler und teuren Prüfschrott reduzieren

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Erfolgreiche Praxiserprobung: Bidirektionale Sensorik optimiert das Laserauftragschweißen

Die Qualität generativ gefertigter Bauteile steht und fällt nicht nur mit dem Fertigungsverfahren, sondern auch mit der Inline-Prozessregelung. Die Prozessregelung sorgt für einen sicheren Beschichtungsprozess, denn Abweichungen von der Soll-Geometrie werden sofort erkannt. Wie gut das mit einer bidirektionalen Sensorik bereits beim Laserauftragschweißen im Zusammenspiel mit einer kommerziellen Optik gelingt, demonstriert das Fraunhofer-Institut für Lasertechnik ILT auf der LASER World of PHOTONICS 2019 auf dem Messestand A2.431.

Das Fraunhofer ILT entwickelt optische Sensorik seit rund 10 Jahren gezielt für die Fertigungsmesstechnik. Dabei hat sich insbesondere die Sensorik mit der...

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Plastik: Mehr Kreislauf gegen die Krise gefordert

21.06.2019 | Veranstaltungen

Rittal und Innovo Cloud sind auf Supercomputing-Konferenz in Frankfurt vertreten

18.06.2019 | Veranstaltungen

Teilautonome Roboter für die Dekontamination - den Stand der Forschung bei Live-Vorführungen am 25.6. erleben

18.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Simulierte Synapsen - TU-Forscher berechnen das neuronale Netz des Gehirns

24.06.2019 | Physik Astronomie

Neuartige und vielseitig einsetzbare Kunststoffzusätze

24.06.2019 | Materialwissenschaften

Mitten ins Herz

24.06.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics