Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erste Filmaufnahmen von Kernporen

03.05.2016

Mithilfe eines extrem schnellen und präzisen Rasterkraftmikroskops haben Forscher der Universität Basel erstmals «lebendige» Kernporenkomplexe bei der Arbeit gefilmt. Kernporen sind molekulare Maschinen, die den Verkehr in und aus dem Zellkern kontrollieren. In ihrem kürzlich in «Nature Nanotechnology» publizierten Artikel erklären die Forscher, wie bewegliche «Tentakeln» in der Pore die Passage von unerwünschten Molekülen verhindern.

Das Rasterkraftmikroskop (AFM) ist kein Mikroskop zum Durchschauen. Es tastet wie ein Blinder mit seinen Fingern die Oberflächen mit einer extrem feinen Spitze ab und kann so selbst millionstel Millimeter kleine zelluläre Strukturen erkennen.


Videoaufnahmen mit Hochgeschwindigkeits-AFM zeigen native Kernporenkomplexe bei der Arbeit; der Massstabsbalken beträgt 10 Nanometer.

Universität Basel

So auch die Poren in der Hülle des Zellkerns. Normalerweise ist diese Messung langsam und benötigt für die Aufnahme eines einzelnen Bildes bis zu einer Minute. Moderne Hochgeschwindigkeits-AFM nehmen dagegen mehrere hundert Bilder pro Minute auf und können so Moleküle in Aktion filmen.

Mithilfe eines solchen Geräts konnte Roderick Lim, Argovia-Professor am Biozentrum und dem Swiss Nanoscience Institut der Universität Basel, nun nicht nur die selektive Barriere der Kernporen, sondern auch ihr dynamisches Verhalten sichtbar machen. Damit gelang es den Forschern, das langjährige Mysterium, wie unerwünschten Molekülen der Einlass zum Zellkern verwehrt wird, zu enträtseln.

Kernporenkomplexe steuern Passage von Molekülen

Die Struktur von Kernporen ist seit langem bekannt. Dabei handelt es sich nicht um einfache Löcher, sondern um wichtige Verkehrsknotenpunkte, die zu Tausenden die Hülle des Zellkerns durchziehen. Sie bestehen aus etwa 30 verschiedenen als Nukleoporine bezeichneten Proteinen, die einen Ring mit einem Transportkanal bilden.

Innerhalb der Pore bilden mehrere ungeordnete Proteine (FG-Nup) eine selektive, mit einem Filter vergleichbare Barriere. Während kleine Moleküle diese Barriere passieren können und so ins Kerninnere gelangen, werden grosse Proteine dagegen aufgehalten. Eine Ausnahme stellen Proteine dar, die im Zellkern zum Beispiel für die Reparatur oder Verdoppelung der Erbinformation gebraucht werden. Sie tragen ein spezielles «Adressschild» und werden mithilfe von Transportproteinen durch die Pore in den Zellkern geschleust.

Superschnelles AFM offenbart dynamische Vorgänge

«Mit dem Hochgeschwindigkeits-AFM konnten wir das erste Mal in die nur 40 Nanometer grossen Kernporenkomplexe hineinschauen», erklärt Lim. «Diese Methode ist wirklich bahnbrechend, denn damit konnten wir die einzelnen FG-Nups sehen und sie in Action filmen. Das war zuvor unmöglich!»

Um in das Innere der Pore hineinzugelangen, musste Yusuke Sakiyama, Doktorand in der Forschungsgruppe von Lim, auf jeder einzelnen Messspitze eine winzige Karbon-Nanofaser wachsen lassen. Mit den damit aufgenommenen Bildern, die zu kurzen Videosequenzen zusammenfügt wurden, konnten die Forscher nun erstmals die «lebensechte» Dynamik biologischer Vorgänge auf Nanoebene beobachten.

Barriere aus wogenden molekularen «Tentakeln»

Aufgrund der hohen räumlichen und zeitlichen Auflösung konnten die Forscher zeigen, dass die FG-Nup-Filamente sehr beweglich sind. «Es sind keine steifen Borsten, ganz im Gegenteil, wie dünnste Tentakeln schwingen sie, strecken oder ziehen sich zusammen oder verknäulen sich innerhalb der Pore», sagt Lim. Die Schnelligkeit ihrer Bewegungen entscheidet darüber, welche Moleküle die Pore passieren können.

«Die FG-Nups bewegen sich viel schneller als grosse Proteine und versperren ihnen so den Zugang zum Kernporenkomplex», so Lim. «Kleine Moleküle sind hingegen schneller und können daher die FG-Nup-Barriere überwinden.»

Mit dem Verständnis über die Funktionsweise der Kernporenkomplexe in lebenden Zellen möchte Lim, der Mitglied des Nationalen Forschungsschwerpunkts Molecular Systems Engineering ist, nun herausfinden, wie solche dem Kernporenkomplex nachempfundene selektive Filter den molekularen Verkehr in nicht-biologischen System regulieren könnten.

Originalbeitrag

Yusuke Sakiyama, Adam Mazur, Larisa E. Kapinos and Roderick Y.H. Lim
Spatiotemporal dynamics of the nuclear pore complex transport barrier resolved by high-speed atomic force microscopy
Nature Nanotechnology (2016), doi: 10.1038/nnano.2016.62

Weitere Auskünfte

Prof. Dr. Roderick Lim, Universität Basel, Biozentrum und Swiss Nanoscience Institute, Tel. +41 61 267 20 83, E-Mail: roderick.lim@unibas.ch

Dr. Katrin Bühler, Universität Basel, Kommunikation Biozentrum, Tel. +41 61 267 09 74, E-Mail: katrin.buehler@unibas.ch

Weitere Informationen:

http://www.biozentrum.unibas.ch/de/forschung/gruppen-plattformen/overview/unit/l... - Forschungsgruppe Prof. Roderick Lim
http://dx.doi.org/10.1038/nnano.2016.62 - Abstract

Dr. Katrin Bühler | Universität Basel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Corona-Forschung an BESSY II: Zwei Tage Messbetrieb für die Suche nach dem richtigen Schlüssel
02.04.2020 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Mehr Vielfalt: Öko-Landwirtschaft bietet Heimat für 60% mehr Schmetterlingsarten
02.04.2020 | Staatliche Naturwissenschaftliche Sammlungen Bayerns

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenimaging: Unsichtbares sichtbar machen

Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern. Ein Forscherteam am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena hat eine Quantenimaging-Lösung entwickelt, die in extremen Spektralbereichen und mit weniger Licht genaueste Einblicke in Gewebeproben ermöglichen kann.

Optische Analyseverfahren wie Mikroskopie und Spektroskopie sind in sichtbaren Wellenlängenbereichen schon äußerst effizient. Doch im Infrarot- oder...

Im Focus: Sensationsfund: Spuren eines Regenwaldes in der Westantarktis

90 Millionen Jahre alter Waldboden belegt unerwartet warmes Südpol-Klima in der Kreidezeit

Ein internationales Forscherteam unter Leitung von Geowissenschaftlern des Alfred-Wegener-Institutes, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI)...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blockierung des Eisentransports könnte Tuberkulose stoppen

Tuberkulose-Bakterien brauchen Eisen zum Überleben. Wird der Eisentransport in den Bakterien gestoppt, so kann sich der Tuberkulose-Erreger nicht weiter vermehren. Nun haben Forscher der Universität Zürich die Struktur des Transportproteins ermittelt, das für die Eisenzufuhr zuständig ist. Dies eröffnet Möglichkeiten zur Entwicklung neuer Medikamente.

Einer der verheerendsten Erreger, der sich im Inneren menschlicher Zellen vermehren kann, ist Mycobacterium tuberculosis – der Bazillus, der Tuberkulose...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

“4th Hybrid Materials and Structures 2020” findet web-basiert statt

26.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Quantenimaging: Unsichtbares sichtbar machen

02.04.2020 | Physik Astronomie

Innovative Materialien und Bauelemente für die Terahertz-Elektronik

02.04.2020 | Materialwissenschaften

Besser gewappnet bei Überflutungen in der Stadt

02.04.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics