Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erbsubstanz-Moleküle werden auf Bio-Chip wie in der Natur zusammengepackt

09.08.2016

Normalerweise stoßen sich einzelne Moleküle des Erbmaterials gegenseitig ab. Ist jedoch wenig Platz, müssen die DNA-Moleküle dichter gepackt werden. In Spermien, im Zellkern und in der Protein-Hülle eines Virus ist dies der Fall. Einem internationalen Physiker-Team ist es nun gelungen, diese sogenannte DNA-Kondensation auf einem Bio-Chip künstlich nachzuempfinden.

Wichtige biologische Abläufe in Zellen nachzubilden und so besser verstehen zu können, ist aktuell ein zentrales Forschungsthema. Nun haben es Physiker der TU München und des Weizmann-Instituts in Rehovot erstmals geschafft, die sogenannte DNA-Kondensation auf einem Bio-Chip kontrolliert ablaufen zu lassen. Dabei handelt es sich um einen Prozess, der überall dort eine Rolle spielt, wo DNA-Moleküle sehr dicht gepackt im Körper vorkommen, etwa weil sie durch räumliche Gegebenheiten auf ein kleines Volumen begrenzt sind.


Labyrinth aus kondensierten DNA-Molekülen

Bild: G. Pardatscher / TUM

Im Zellkern ist das genauso der Fall wie in der Protein-Hülle eines Virus oder im Kopf eines Spermiums. Das Phänomen ist auch physikalisch interessant, weil es eine Art Phasenübergang darstellt. Die DNA-Doppelstränge, die sich normalerweise aufgrund ihrer negativen Ladung gegenseitig abstoßen, sind dann ganz eng zusammengepackt. „Im verdichteten Zustand sind sie beinahe kristallin angeordnet“, sagt Co-Autor und TU-Professor Friedrich Simmel.

Nano-Haare

Dem internationalen Team um Simmel und seinen israelischen Kollegen Roy Bar-Ziv gelang es, Tausendstel Millimeter, also mehrere tausend Basenpaare lange DNA-Moleküle möglichst dicht an verschieden breite Nano-Strukturen auf einem Chip zu binden. Dies sieht ein bisschen so aus, als hätten die Forscher winzige Härchen auf die Chipoberfläche transplantiert.

Aufgrund ihrer negativen Ladung stießen sich die DNA-Moleküle zunächst ab, was wirkte, als würden einem die Nano-Härchen zu Berge stehen. Gaben die Forscher nun ein Mittel namens Spermidin hinzu, dessen Moleküle mehrfach positiv geladen sind, startete der Kondensationsvorgang. Die zuvor eher aufrecht stehenden DNA-Fäden fielen in sich zusammen, einer nach dem anderen sank zielgerichtet entlang der dünnen Strukturen auf den nächsten.

Das ist wie eine Domino-Kaskade im Nanoformat. Das Resultat waren dicht übereinander liegende DNA-Moleküle, so eng gepackt, wie sie eben auch in Zellkernen vorkommen. Alle DNA-Moleküle lagen entlang der vorgegebenen Pfade. „Das ist ein ganz dramatischer Vorgang“, sagt Simmel. „Die DNA wird schlagartig in eine Richtung gebündelt.“

Kondensation und Dekondensation, also das erneute Entpacken der DNA-Stränge, spielen beispielsweise bei der Genexpression eine wichtige Rolle. Sind die DNA-Moleküle dicht gepackt, lässt sich beispielsweise die in ihnen gespeicherte Information nicht auslesen.

Neue Erkenntnisse mit dem DNA-Chip

Die Forscher haben so einen weiteren Baustein, um auf Chip-Oberflächen gezielt künstliche Zellen herstellen und mit all ihren Phänomenen studieren zu können. „Es ist denkbar, Zell-ähnliche Systeme mit dicht gepackter DNA auf einem Chip zu realisieren“, sagt Simmel. Die DNA-Kondensation könnte dann dazu dienen, die Gen-Expression und das Kopieren von Gen-Informationen in so einer künstlichen Zelle besser steuern zu können.

Prinzipiell ist es auch möglich, die dicht gepackten DNA-Moleküle dazu zu nutzen, auf solchen Biochips gezielt Signale und Informationen über eine Art Leiterbahn weiterzugeben und zu verteilen. Kondensation und Dekondensation ließen sich dabei wie ein An-/Aus-Schalter nutzen und zeitlich gut steuern.

Friedrich Simmel wäre kein leidenschaftlicher Grundlagenforscher, würde er nicht neben technischen Anwendungsperspektiven gleichzeitig die Grundlagenphysik im Auge behalten. „Wir wollen auch die Bedingungen des Phasenübergangs bei der Kondensation verstehen“, sagt Simmel. „Dafür haben wir auf dem Chip ideale Bedingungen. Wir können exakt kontrollieren, wo er stattfindet und wie schnell er passiert.“

Das sei so ähnlich wie bei einem unterkühlten Wasser oder Bier im Eisfach, wo die Flüssigkeit auch von einem Kristallisationskeim ausgehend ab einem bestimmten Punkt schlagartig kristallisiere und das Eis wachse. Nur steuert hier nicht die Temperatur den Phasenübergang, sondern die Konzentration der positiv geladenen Moleküle.

Die Arbeiten wurden unterstützt durch Mittel der Volkswagen Stiftung, der Deutschen Forschungsgemeinschaft über den Exzellenzcluster Nanosystems Initiative Munich (NIM), der Israel Science Foundation und der Minerva 80 Foundation.

Publikation:
G. Pardatscher, D. Bracha, O. Vonshak, S. S. Daube, F. C. Simmel, R. H. Bar-Ziv, „DNA condensation in one dimension“, Nature Nanotechnology (2016), DOI: 10.1038/nnano.2016.142

Kontakt:
Prof. Dr. Friedrich C. Simmel
Physik-Department und ZNN/WSI
Am Coulombwall 4a
85748 Garching, Deutschland
Tel: +49 89 289 11610
E-Mail: simmel@tum.de
Web: http://www.e14.ph.tum.de/

Weitere Informationen:

http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2016.142.html Link zur Publikation
http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/33314/ Link zur Pressemitteilung

Dr. Ulrich Marsch | Technische Universität München

Weitere Berichte zu: Bio-Chip Chip Coulombwall DNA-Chip DNA-Moleküle DNA-Stränge Genexpression Moleküle dna

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bedeutung des „Ozeanwetters“ für Ökosysteme
21.08.2018 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht In Form gebracht
21.08.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Mischung macht‘s: Jülicher Forscher entwickeln schnellladefähige Festkörperbatterie

Mit Festkörperbatterien sind aktuell große Hoffnungen verbunden. Sie enthalten keine flüssigen Teile, die auslaufen oder in Brand geraten könnten. Aus diesem Grund sind sie unempfindlich gegenüber Hitze und gelten als noch deutlich sicherer, zuverlässiger und langlebiger als herkömmliche Lithium-Ionen-Batterien. Jülicher Wissenschaftler haben nun ein neues Konzept vorgestellt, das zehnmal größere Ströme beim Laden und Entladen erlaubt als in der Fachliteratur bislang beschrieben. Die Verbesserung erzielten sie durch eine „clevere“ Materialwahl. Alle Komponenten wurden aus Phosphatverbindungen gefertigt, die chemisch und mechanisch sehr gut zusammenpassen.

Die geringe Stromstärke gilt als einer der Knackpunkte bei der Entwicklung von Festkörperbatterien. Sie führt dazu, dass die Batterien relativ viel Zeit zum...

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Dialog an Deck, Science Slam und Pong-Battle

21.08.2018 | Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Zukünftige Informationstechnologien: Wärmetransport auf der Nanoskala unter die Lupe genommen

21.08.2018 | Physik Astronomie

Bedeutung des „Ozeanwetters“ für Ökosysteme

21.08.2018 | Biowissenschaften Chemie

Auf dem Weg zur personalisierten Medizin

21.08.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics