Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Epigenetische Ansätze zur Tumortherapie

25.11.2015

Die Funktion einer Zelle wird zum Einen von der Erbinformation bestimmt, dem Genom, zum Anderen von den Instruktionen, wie dieses Genom zu verwenden ist, z.B. ob bestimmte Gene an- oder abgeschaltet werden. Diese Instruktionen sind in chemischen Modifikationen der DNA und der DNA verpackenden Proteine kodiert, die man heute als epigenetisch bezeichnet.

Krebserkrankungen gehen in der Regel mit Änderungen im Genom der Tumorzellen einher (sog. Mutationen), außerdem kommt es aber auch zu umfassenden epigenetischen Änderungen.


Gerichtete DNA-Methylierung zur Abschaltung der Expression von Onkogenen

Hierbei werden dann z.B. die Zellteilung inhibierende Gene abgeschaltet oder das Ablesen von sog. Onkogenen wird stimuliert, deren Genprodukte die Zellteilung befördern.

Interessanterweise, sind diese epigenetischen Änderungen (im Gegensatz zu den genetischen Mutationen) reversibel, was die Perspektive einer epigenetischen Tumorbehandlung eröffnet. Ziel dieses Projekts war es, DNA Methylierung als reprimierendes epigenetisches Signal gezielt neu zu etablieren und dadurch das Ablesen von Onkogenen abzuschalten.

Dies sollte mit künstlich hergestellten Fusionsproteinen erfolgen, die einen Anteil haben, der gezielt an die regulatorischen Regionen eines Onkogens bindet, und einen zweiten Anteil, der dann dort DNA Methylierung einfügt und damit das Gen stilllegt.

Diese Vorgehensweise wird als Epigenom Editierung bezeichnet, und sie hat weitreichende medizinische Anwendungsmöglichkeiten, die wesentlich über die Tumortherapie hinausgehen. Wir konnten experimentell zeigen, dass die gezielte Methylierung an zwei unterschiedlichen Genen erfolgreich etabliert werden konnte und dies, wie beabsichtigt, das Ablesen der entsprechenden Onkogene verhindert.

In einem Fall konnten wir auch zeigen, dass diese Genrepression die Teilungsrate einer Tumorzelllinie in Zellkulturen verringert, womit das Potential einer epigenetischen Tumortherapie illustriert wird. Zukünftige Studien sollen nun zeigen, ob der tumorinhibierende Effekt der Methylierung von Onkogenen auch in lebenden Organismen beobachtet werden kann.

In einer Kooperation mit Frau Dr. Thomas und Herrn Prof. Dr. Zanger vom Institut für Klinische Pharmakologie der Robert Bosch Klinik in Stuttgart, haben wir allerdings auch beobachtet, dass die epigenetischen Veränderungen, die von uns gezielt in das Genom eingebracht wurden, anders als vermutet, nicht stabil sind, sondern im Laufe der Zeit wieder verlorengehen.

Weitere Grundlagenforschung wird nötig sein, um die Dynamik epigenetischer Regulationsnetzwerke besser zu verstehen, und auf der Basis dieses Wissens eine stabile epigenetische Regulation zu erreichen, die dann klinisch anwendbar sein könnte.

Kontakt:
Prof. Dr. Albert Jeltsch
Lehrstuhl für Biochemie
Fakultät Chemie
Universität Stuttgart
Pfaffenwaldring 55
D-70569 Stuttgart
Tel: +49 711 685 64390
Fax: +49 711 685 64392
albert.jeltsch@ibc.uni-stuttgart.de
http://www.ibc.uni-stuttgart.de/

Die Wilhelm Sander-Stiftung förderte dieses Forschungsprojekt mit 208.000 Euro. Stiftungszweck der Stiftung ist die medizinische Forschung, insbesondere Projekte im Rahmen der Krebsbekämpfung. Seit Gründung der Stiftung wurden dabei insgesamt über 220 Mio. Euro für die Forschungsförderung in Deutschland und der Schweiz bewilligt. Die Stiftung geht aus dem Nachlass des gleichnamigen Unternehmers hervor, der 1973 verstorben ist.

Weitere Informationen:

http://www.wilhelm-sander-stiftung.de

Bernhard Knappe | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sinneswahrnehmung ist keine Einbahnstraße
17.10.2018 | Eberhard Karls Universität Tübingen

nachricht Neuer ALS-Bluttest: Hilfe bei der Differenzialdiagnose und Hinweise auf Krankheitsverlauf
17.10.2018 | Universität Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Im Focus: Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

Die Forschungskooperation zwischen der Universität Yale und der Universität Rostock hat neue wissenschaftliche Ergebnisse hervorgebracht. In der renommierten Zeitschrift „Angewandte Chemie“ berichten die Wissenschaftler über eine Dreierkette aus Ionen gleicher Ladung, die durch sogenannte Wasserstoffbrücken zusammengehalten werden. Damit zeigen die Forscher zum ersten Mal eine Dreierkette aus gleichgeladenen Ionen, die sich im Grunde abstoßen.

Die erfolgreiche Zusammenarbeit zwischen den Professoren Mark Johnson, einem weltbekannten Cluster-Forscher, und Ralf Ludwig aus der Physikalischen Chemie der...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2018

16.10.2018 | Veranstaltungen

Künstliche Intelligenz in der Medizin

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Sinneswahrnehmung ist keine Einbahnstraße

17.10.2018 | Biowissenschaften Chemie

Space Farming dank Pflanzenhormon Strigolacton

17.10.2018 | Agrar- Forstwissenschaften

Oberflächen mit flexiblen und handlichen Plasmaquellen aktivieren

17.10.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics