Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Epigenetische Analyse: Dem Tumor den richtigen Namen geben

15.03.2018

Wissenschaftler des „Hopp-Kindertumorzentrums am NCT Heidelberg (KiTZ)“ und der Abteilung Neuropathologie am Universitätsklinikum Heidelberg haben die Klassifikation von Tumoren des Zentralen Nervensystems (ZNS) entscheidend verbessert / Ärzte können ZNS-Tumoren nun präziser bestimmten Risikogruppen zuordnen und auf dieser Basis ihre Therapieentscheidung treffen /Das Verfahren wurde in enger Zusammenarbeit mit dem Deutschen Krebskonsortium (DKTK) entwickelt / Publikation in der Fachzeitschrift Nature

Das Hopp-Kindertumorzentrum am NCT Heidelberg (KiTZ) ist eine gemeinsame Einrichtung des Universitätsklinikums Heidelberg und des Deutschen Krebsforschungszentrums (DKFZ).


Logo KiTZ

Universitätsklinikum Heidelberg

Damit Krebs des zentralen Nervensystems erfolgreich behandelt werden kann, ist es wichtig, die molekularen Eigenschaften der Tumoren genau zu kennen und den Tumoren damit „den richtigen Namen zu geben“. Zurzeit lassen sich über Gewebemerkmale rund 100 verschiedene Arten von ZNS-Tumoren unterscheiden, die ganz unterschiedlich auf Strahlen- und Chemotherapien ansprechen.

Mitunter werden molekulardiagnostische Methoden eingesetzt, um den Tumor näher zu klassifizieren, zum Beispiel über bestimmte Genmutationen. Dennoch ist die Variabilität groß, was die Standardisierung von Diagnoseverfahren erschwert.

Um die Diagnostik von ZNS-Tumoren zu verbessern, entwickelte das Team um Professor Stefan Pfister, KiTZ-Direktor und Abteilungsleiter „Pädiatrische Neuroonkologie“ am DKFZ, zusammen mit Kollegen der Abteilung Neuropathologie am Heidelberger Universitätsklinikum unter der Leitung von Professor Andreas von Deimling, ein neues computerbasiertes Verfahren:

„Wir hoffen, die diagnostische Treffsicherheit bei ZNS-Tumoren mit unserer neuen, molekularen Klassifizierungsmethode zu verbessern und damit auch die Erfolgsaussichten der anschließenden Therapie zu erhöhen“, erklärt von Deimling.

Die Forscher analysierten bestimmte chemische Markierungen im Erbgut von Tumoren, sogenannte DNA-Methylierungen. Verschiedene Zelltypen weisen charakteristische Muster an DNA-Methylierungen in ihrem Erbgut auf, die wiederum Rückschlüsse auf die zelluläre Herkunft des Tumors zulassen. „Wir haben computerbasierte Algorithmen entwickelt, die 82 verschiedene Arten von ZNS-Tumoren anhand ihrer Methylierungsmuster zuverlässig unterscheiden können“, sagt Professor David Capper, einer der vier Erstautoren der Studie, der inzwischen als Fakultätsmitglied des DKTK-Standortes Berlin eine Professur für molekulare Neuropathologie an der Charité – Universitätsmedizin Berlin angenommen hat.

„Gerade bei Tumoren, die wir durch die reine Betrachtung unter dem Mikroskop nicht ohne weiteres einer diagnostischen Kategorie zuordnen können, hilft die Methylierungsanalyse häufig, eine eindeutige Diagnose zu stellen. Die Analyse der insgesamt circa 2800 Tumor-Referenzproben ermöglichte zudem die Abgrenzung bestimmter Tumor-Subgruppen, die in den bisher gängigen Klassifizierungen noch gar nicht enthalten sind.“

Einsatz in der Klinik

Um zu testen, ob sich die Methode für den Einsatz in der klinischen Routinediagnostik eignet, analysierten die Wissenschaftler mehr als 1100 weitere Tumorproben. In rund 12 Prozent der Tumoren konnten sie mithilfe der Methylierungsmuster die ursprüngliche Diagnose korrigieren. Weiterführende molekulardiagnostische Untersuchungen zeigten in fast allen Fällen, in denen dies möglich war, dass die molekulare Zuordnung die Tumoren sogar besser charakterisierte als die ursprüngliche mikroskopische Diagnose.

„Wir sind überzeugt, dass sich unsere neue Methode gut für den Einsatz in der Klinik eignet“, sagt Pfister und ergänzt: „Wir haben unser Klassifizierungssystem online zugänglich gemacht, damit Forscher ihre Daten auf unserer Plattform analysieren können.“ Durch die Informationen, die auf diese Weise gleichzeitig eingehen, sollen vor allem seltene Krebserkrankungen in Zukunft eindeutig diagnostiziert und damit besser behandelt werden können.

Die Online-Plattform zur DNA-Methylierungsanalyse ist unter www.molecularneuropathology.org  verfügbar.

Das Projekt wurde maßgeblich unterstützt von der Deutschen Kinderkrebsstiftung.
Originalpublikation: Capper D., Jones D.T.W. Sill M. and Hovestadt V. (gemeinsame Erstautoren) et al. (2018) „DNA methylation-based classification of central nervous system tumours”. Online-Publikation am 14.03.2018; DOI: doi:10.1038/nature26000

Ansprechpartnerin für die Presse:

Dr. Elke Matuschek
Hopp-Kindertumorzentrum am NCT Heidelberg (KiTZ)
Referentin Presse- und Öffentlichkeitsarbeit
Im Neuenheimer Feld 130.3
69120 Heidelberg
T: +49 (0) 6221 56 36434
E-Mail: e.matuschek@kitz-heidelberg.de

Das Hopp-Kindertumorzentrum am NCT Heidelberg (KiTZ)

Das „Hopp-Kindertumorzentrum am NCT Heidelberg“ (KiTZ) ist eine gemeinsame Einrichtung des Universitätsklinikums Heidelberg und des Deutschen Krebsforschungszentrums (DKFZ). Das KiTZ ist gleichzeitig Therapie- und Forschungszentrum für onkologische und hämatologische Erkrankungen im Kindes- und Jugendalter. Es verfolgt das Ziel, die Biologie kindlicher Krebserkrankungen wissenschaftlich zu ergründen und vielversprechende Forschungsansätze eng mit der Patientenversorgung zu verknüpfen – von der Diagnose über die Behandlung bis hin zur Nachsorge. Krebskranke Kinder, gerade auch diejenigen, für die keine etablierten Behandlungsoptionen zur Verfügung stehen, bekommen im KiTZ einen individuellen Therapieplan, den Experten verschiedener Disziplinen in Tumorkonferenzen gemeinsam erstellen. Viele junge Patienten können an klinischen Studien teilnehmen und erhalten damit Zugang zu neuen Therapieoptionen. Beim Übertragen von Forschungserkenntnissen aus dem Labor in die Klinik übernimmt das KiTZ damit Vorbildfunktion.

Universitätsklinikum und Medizinische Fakultät Heidelberg: Krankenversorgung, Forschung und Lehre von internationalem Rang

Das Universitätsklinikum Heidelberg ist eines der bedeutendsten medizinischen Zentren in Deutschland; die Medizinische Fakultät der Universität Heidelberg zählt zu den international renommierten biomedizinischen Forschungseinrichtungen in Europa. Gemeinsames Ziel ist die Entwicklung innovativer Diagnostik und Therapien sowie ihre rasche Umsetzung für den Patienten. Klinikum und Fakultät beschäftigen rund 13.000 Mitarbeiterinnen und Mitarbeiter und engagieren sich in Ausbildung und Qualifizierung. In mehr als 50 klinischen Fachabteilungen mit fast 2.000 Betten werden jährlich rund 65.000 Patienten vollstationär, 56.000 mal Patienten teilstationär und mehr als 1.000.000 mal Patienten ambulant behandelt. Gemeinsam mit dem Deutschen Krebsforschungszentrum und der Deutschen Krebshilfe hat das Universitätsklinikum Heidelberg das Nationale Centrum für Tumorerkrankungen (NCT) Heidelberg etabliert, das führende onkologische Spitzenzentrum in Deutschland. Das Heidelberger Curriculum Medicinale (HeiCuMed) steht an der Spitze der medizinischen Ausbildungsgänge in Deutschland. Derzeit studieren ca. 3.700 angehende Ärztinnen und Ärzte in Heidelberg. www.klinikum-heidelberg.de

Weitere Informationen:

http://www.kitz-heidelberg.de
http://www.molecularneuropathology.org

Julia Bird | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entstanden Nervenzellen, um mit Mikroben zu sprechen?
10.07.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Forscher der Universität Bayreuth entdecken außergewöhnliche Regeneration von Nervenzellen
09.07.2020 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg

10.07.2020 | Informationstechnologie

Binnenschifffahrt soll revolutioniert werden: Erst ferngesteuert, dann selbstfahrend

10.07.2020 | Verkehr Logistik

Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics