Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Enzyme bei der Arbeit: Aufspaltung widerspenstiger Cellulose

12.10.2017

TU Graz-Forschende beobachten Enzyme bei der Aufspaltung von Cellulose und wollen damit unter anderem die Produktion von Biokraftstoffen unterstützen. Ihre Ergebnisse publizieren sie nun in Nature Communications.

Kraftstoffe aus Biomasse werden immer wichtiger. Abgesehen von Biomethan können sie aber noch nicht effizient, kostengünstig und nachhaltig produziert werden, der technische und finanzielle Aufwand ist derzeit noch zu hoch. „Mitschuld“ daran trägt Cellulose, ein Polysaccharid und Pflanzenbestandteil, der nicht wasserlöslich und damit schwer zu verarbeiten ist.


Wie die Forschenden den Prozess der Celluloseaufspaltung an der Oberfläche beobachtet und dokumentiert haben, ist aktuell in Nature Communications veröffentlicht.

© Lunghammer - TU Graz


Hydrolytische Enzyme spalten Cellulose besser auf und ebnen damit ein Stück den Weg zu konkurrenzfähigen Biokraftstoffen.

© Lunghammer - TU Graz

Oxidative Enzyme

Im Normalfall verwenden Bioraffinerien – so wie es auch in natürlichen Abbauprozessen geschieht – einen Mix aus hydrolytisch aktiven, also Wasser benötigenden Enzymen für den Abbau von pflanzlichen Rohstoffen.

Vor einiger Zeit entdeckte man oxidative Enzyme, die unter Zuhilfenahme von Sauerstoff arbeiten und gemeinsam mit den hydrolytischen Enzymen Cellulose bereits wesentlich besser spalten können. Wie diese oxidativen Enzyme – genannt LPMOs (lytic polysaccharide monooxygenase) – aber genau arbeiten, war nicht bekannt. An genau diesem Punkt setzten die Forschenden der TU Graz an.

Enzyme unter dem Rasterkraftmikroskop

Mittels Rasterkraftmikroskopie konnten die Forschenden nun erstmalig die Enzyme bei ihrer aufspaltenden Arbeit an der Oberfläche der Cellulosepartikel beobachten und einen direkten Nachweis ihrer Aktivität erbringen. Bereits seit mehreren Jahren arbeitet das Institut für Biotechnologie und Bioprozesstechnik dafür eng mit dem Grazer Zentrum für Elektronenmikroskopie zusammen.

Für die aktuell in Nature Communications publizierte Studie wurde in einem ersten Schritt das schon länger bekannte, hydrolytisch aktive Enzym Trichoderma reesei CBH I beobachtet. Es setzt sich an der Oberfläche eines Partikels fest, wandert die Polysaccheridketten entlang und spaltet Schritt für Schritt immer mehr kleine Teile davon ab.

In einem weiteren Schritt wurde beobachtet, wie sich das Verhalten der Enzyme veränderte, wenn LPMOs beigemengt wurden. Hier konnten die Forschenden nachweisen, dass die LPMOs einerseits mehr Bindestellen für die hydrolytisch aktiven Enzyme an der Oberfläche erzeugen und andererseits die Enzymdynamik an der Oberfläche wesentlich zunahm.

Ein Bild sagt mehr als tausend Worte

Mit dieser Studie will man einerseits auf Grundlagenebene zum besseren Verständnis dieser Vorgänge beitragen und andererseits in einem weiteren Schritt die Herstellung von Biokraftstoffen vereinfachen. „Üblicherweise untersucht man in der Chemie lösliche Produkte, misst beispielsweise die Konzentration, um etwas über die Reaktion zu lernen.

Das ist aber wie in diesem Fall bei einer Reaktion an der Oberfläche eines Festkörpers nicht praktikabel. Wir wollten den Schritt davor, also den Prozess der Celluloseaufspaltung, an der Oberfläche beobachten und dokumentieren“, so Manuel Eibinger, Erstautor der Studie und Postdoktorand am Institut für Biotechnologie und Bioprozesstechnik.

Bernd Nidetzky, Leiter des Instituts für Biotechnologie und Bioprozesstechnik der TU Graz: „Man könnte hier das Sprichwort bedienen: Ein Bild sagt mehr als tausend Worte. Wir wollten mit dieser Studie eine zeitlich aufgelöste Dokumentation der Vorgänge erstellen. Und das ist uns nun gelungen.“

Zur Publikation in Nature Communications:
Single molecule study of oxidative enzymatic deconstruction of cellulose. Manuel Eibinger, Jürgen Sattelkow, Thomas Ganner, Harald Plank & Bernd Nidetzky. Nature Communications. DOI 10.1038/s41467-017-01028-y. https://www.nature.com/articles/s41467-017-01028-y

An der TU Graz ist dieses Forschungsthema im Field of Expertise "Human & Biotechnology" verankert, einem von fünf strategischen Forschungsschwerpunkten.

Kontakt:
Bernd NIDETZKY
Univ.-Prof.Dipl.-Ing. Dr.techn.
Institut für Biotechnologie und Bioprozesstechnik
Petersgasse 10-12
8010 Graz
Tel.: +43 316 873 8400
E-Mail: bernd.nidetzky@tugraz.at

Manuel EIBINGER
Dipl.-Ing. Dr.techn. BSc
Institut für Biotechonologie und Bioprozesstechnik
Petersgasse 10-12
8010 Graz
Tel.: +43 316 873 8409
E-Mail: m.eibinger@tugraz.at

Weitere Informationen:

https://www.nature.com/articles/s41467-017-01028-y Link zum Paper in Nature Communications

Mag. Susanne Eigner | Technische Universität Graz
Weitere Informationen:
http://www.tugraz.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics