Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entdeckung eines ungewöhnlichen Proteins

02.12.2019

Wissenschaftler aus Bremen entdeckten ein ungewöhnliches Protein, das eine bedeutende Rolle im Stickstoffkreislauf der Erde spielt. Das neue Zytochrom, das eine Häm-Gruppe enthält, ist am Anammox-Prozess beteiligt: Dieser produziert rund die Hälfte des Stickstoffs der Atmosphäre und ist wichtig für die Regulierung von Treibhausgasen.

Stickstoff ist ein wesentlicher Bestandteil des Lebens. Er wird zum Beispiel für die Herstellung von Proteinen benötigt. Boran Kartal, Leiter der Forschungsgruppe Mikrobielle Physiologie am Max-Planck-Institut für Marine Mikrobiologie, untersucht Mikroorganismen, die die Verfügbarkeit dieser lebenswichtigen Ressource für Pflanzen und Tiere beeinflussen.


Einer der Bioreaktoren, mit denen Kartal und sein Team Zellen von K. stuttgartiensis im Labor wachsen ließen.

Boran Kartal

Ein besonders spannender Teil des Stickstoff-Kreislaufs ist dabei der sogenannte Anammox-Prozess. Anammox ist eine Abkürzung und bedeutet anaerobe Ammoniumoxidation. Durch diesen Prozess werden Nitrit oder Stickoxid und Ammonium direkt in molekularen Stickstoff (N2) umgewandelt.

Kartal und seine Kolleginnen und Kollegen haben jetzt ein Protein entdeckt, das am Anammox-Prozess beteiligt ist und das einige Überaschungen birgt. Ihre Ergebnisse erscheinen in der Novemberausgabe des Journal of Biological Chemistry.

Zu ungewöhnlich, um entdeckt zu werden

Dieses neu entdeckte Protein ist ein Zytochrom, das Häm enthält. Es ist an der Umwandlung von Ammonium und Stickoxid in Hydrazin beteiligt ist. „Häm-Proteine sind generell sehr wichtig für unser Leben, beispielsweise das Hämoglobin in unserem Blut, das Sauerstoff transportiert.

Häm-Strukturen gleichen zumeist einem Spinnennetz mit einem Eisen-Atom als Mittelpunkt. Ein Blick auf den Stammbaum des Lebens zeigt, dass dieses Spinnennetz eigentlich immer mit einer Struktur aus fünf Aminosäuren an den Rest des Proteins gebunden ist“, erläutert Kartal.

„Doch überraschenderweise gilt das nicht für das Protein, das wir entdeckt haben. Dieses hat nämlich eine sehr ungewöhnliche Struktur: Es formt dieses Muster mit nur vier Aminosäuren und wurde deshalb bisher übersehen.“

Weniger Treibhausgase

Das neu entdeckte Protein steht im Mittelpunkt des sehr spannenden und bedeutsamen Anammox-Prozesses. Die hieran beteiligten Bakterien wandeln Nitrit oder Stickoxid (NO) und Ammonium in unschädlichen, elementaren Stickstoff (N2) um, wie Kartal kürzlich zeigte.

Damit unterscheiden sie sich klar von einer Vielzahl anderer Mikroorganismen, die aus NO stattdessen das Treibhausgas Lachgas (N2O) produzieren. So ist jedes Molekül Stickoxid, das nicht in Lachgas, sondern in elementaren Stickstoff umgewandelt wird, ein Molekül weniger, das zum Klimawandel beiträgt.

Anammox Bakterien reduzieren folglich die Menge an verfügbarem Stickoxid für die Lachgas-Produktion und verringern die Menge an freigesetzten Treibhausgasen.

Ein überraschend gewöhnliches Muster

In Anbetracht dieser Relevanz gingen Kartal und seine Kolleginnen und Kollegen einen Schritt weiter: Sie durchforsteten Datenbanken, um herauszufinden, wie verbreitet Proteine mit dieser neu entdeckten Struktur in der Natur sind.

„Dieses Muster kommt bemerkenswert oft vor“, sagt Kartal. Proteine mit der Vier-Amonisäure-Struktur gibt es in vielen unterschiedlichen Mikroorganismen quer durch die Welt der Bakterien und der Archaea.

„Wir haben es in vielen verschiedenen mikrobiellen Gruppen gefunden, etwa bei Bakterien, die sich von Methan ernähren, und bei solchen, die Metalle abbauen“, so Kartal weiter.

Das ganze Potenzial von Proteinen mit der Vier-Aminosäure-Struktur ist noch gar nicht erforscht. „In Anammox-Bakterien steckt es in einem Protein, das Elektronen hin- und herbewegt“, sagt Kartal.

„In anderen Organismen verleiht es dem Protein, in das es eingebunden ist, möglicherweise ganz besondere Eigenschaften. Dies ist auf jeden Fall ein sehr spannender Ansatz für die weitere Forschung.“

Wissenschaftliche Ansprechpartner:

Dr. Boran Kartal
Leiter der Gruppe Mikrobielle Physiologie
Max-Planck-Institut für Marine Mikrobiologie, Bremen
Telefon: +49 421 2028-645
E-Mail: bkartal@mpi-bremen.de

Originalpublikation:

Christina Ferousi, Simon Lindhoud, Eric R. Hester, Joachim Reimann, Frauke Baymann und Boran Kartal: Discovery of a functional, contracted heme-binding motif within a multiheme cytochrome. The Journal of Biological Chemistry, Vol. 294, Issue 45, 16953-16965, November 8, 2019
DOI: 10.1074/jbc.RA119.010568

Weitere Informationen:

https://www.mpi-bremen.de/Page4233.html

Dr. Fanni Aspetsberger | Max-Planck-Institut für Marine Mikrobiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Experimentelles Tumormodell offenbart neue Ansätze für die Immuntherapie bei Glioblastom-Patienten
18.02.2020 | Universitätsmedizin Mannheim

nachricht Kleber für gebrochene Herzen
18.02.2020 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lichtpulse bewegen Spins von Atom zu Atom

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzpulsspektroskopie (MBI) und des Max-Planck-Instituts für Mikrostrukturphysik haben durch die Kombination von Experiment und Theorie die Frage gelöst, wie Laserpulse die Magnetisierung durch ultraschnellen Elektronentransfer zwischen verschiedenen Atomen manipulieren können.

Wenige nanometerdünne Filme aus magnetischen Materialien sind ideale Testobjekte, um grundlegende Fragestellungen des Magnetismus zu untersuchen. Darüber...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Höhere Treibhausgasemissionen durch schnelles Auftauen des Permafrostes

18.02.2020 | Geowissenschaften

Supermagnete aus dem 3D-Drucker

18.02.2020 | Maschinenbau

Warum Lebewesen schrumpfen

18.02.2020 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics