Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entdeckung eines ungewöhnlichen Proteins

02.12.2019

Wissenschaftler aus Bremen entdeckten ein ungewöhnliches Protein, das eine bedeutende Rolle im Stickstoffkreislauf der Erde spielt. Das neue Zytochrom, das eine Häm-Gruppe enthält, ist am Anammox-Prozess beteiligt: Dieser produziert rund die Hälfte des Stickstoffs der Atmosphäre und ist wichtig für die Regulierung von Treibhausgasen.

Stickstoff ist ein wesentlicher Bestandteil des Lebens. Er wird zum Beispiel für die Herstellung von Proteinen benötigt. Boran Kartal, Leiter der Forschungsgruppe Mikrobielle Physiologie am Max-Planck-Institut für Marine Mikrobiologie, untersucht Mikroorganismen, die die Verfügbarkeit dieser lebenswichtigen Ressource für Pflanzen und Tiere beeinflussen.


Einer der Bioreaktoren, mit denen Kartal und sein Team Zellen von K. stuttgartiensis im Labor wachsen ließen.

Boran Kartal

Ein besonders spannender Teil des Stickstoff-Kreislaufs ist dabei der sogenannte Anammox-Prozess. Anammox ist eine Abkürzung und bedeutet anaerobe Ammoniumoxidation. Durch diesen Prozess werden Nitrit oder Stickoxid und Ammonium direkt in molekularen Stickstoff (N2) umgewandelt.

Kartal und seine Kolleginnen und Kollegen haben jetzt ein Protein entdeckt, das am Anammox-Prozess beteiligt ist und das einige Überaschungen birgt. Ihre Ergebnisse erscheinen in der Novemberausgabe des Journal of Biological Chemistry.

Zu ungewöhnlich, um entdeckt zu werden

Dieses neu entdeckte Protein ist ein Zytochrom, das Häm enthält. Es ist an der Umwandlung von Ammonium und Stickoxid in Hydrazin beteiligt ist. „Häm-Proteine sind generell sehr wichtig für unser Leben, beispielsweise das Hämoglobin in unserem Blut, das Sauerstoff transportiert.

Häm-Strukturen gleichen zumeist einem Spinnennetz mit einem Eisen-Atom als Mittelpunkt. Ein Blick auf den Stammbaum des Lebens zeigt, dass dieses Spinnennetz eigentlich immer mit einer Struktur aus fünf Aminosäuren an den Rest des Proteins gebunden ist“, erläutert Kartal.

„Doch überraschenderweise gilt das nicht für das Protein, das wir entdeckt haben. Dieses hat nämlich eine sehr ungewöhnliche Struktur: Es formt dieses Muster mit nur vier Aminosäuren und wurde deshalb bisher übersehen.“

Weniger Treibhausgase

Das neu entdeckte Protein steht im Mittelpunkt des sehr spannenden und bedeutsamen Anammox-Prozesses. Die hieran beteiligten Bakterien wandeln Nitrit oder Stickoxid (NO) und Ammonium in unschädlichen, elementaren Stickstoff (N2) um, wie Kartal kürzlich zeigte.

Damit unterscheiden sie sich klar von einer Vielzahl anderer Mikroorganismen, die aus NO stattdessen das Treibhausgas Lachgas (N2O) produzieren. So ist jedes Molekül Stickoxid, das nicht in Lachgas, sondern in elementaren Stickstoff umgewandelt wird, ein Molekül weniger, das zum Klimawandel beiträgt.

Anammox Bakterien reduzieren folglich die Menge an verfügbarem Stickoxid für die Lachgas-Produktion und verringern die Menge an freigesetzten Treibhausgasen.

Ein überraschend gewöhnliches Muster

In Anbetracht dieser Relevanz gingen Kartal und seine Kolleginnen und Kollegen einen Schritt weiter: Sie durchforsteten Datenbanken, um herauszufinden, wie verbreitet Proteine mit dieser neu entdeckten Struktur in der Natur sind.

„Dieses Muster kommt bemerkenswert oft vor“, sagt Kartal. Proteine mit der Vier-Amonisäure-Struktur gibt es in vielen unterschiedlichen Mikroorganismen quer durch die Welt der Bakterien und der Archaea.

„Wir haben es in vielen verschiedenen mikrobiellen Gruppen gefunden, etwa bei Bakterien, die sich von Methan ernähren, und bei solchen, die Metalle abbauen“, so Kartal weiter.

Das ganze Potenzial von Proteinen mit der Vier-Aminosäure-Struktur ist noch gar nicht erforscht. „In Anammox-Bakterien steckt es in einem Protein, das Elektronen hin- und herbewegt“, sagt Kartal.

„In anderen Organismen verleiht es dem Protein, in das es eingebunden ist, möglicherweise ganz besondere Eigenschaften. Dies ist auf jeden Fall ein sehr spannender Ansatz für die weitere Forschung.“

Wissenschaftliche Ansprechpartner:

Dr. Boran Kartal
Leiter der Gruppe Mikrobielle Physiologie
Max-Planck-Institut für Marine Mikrobiologie, Bremen
Telefon: +49 421 2028-645
E-Mail: bkartal@mpi-bremen.de

Originalpublikation:

Christina Ferousi, Simon Lindhoud, Eric R. Hester, Joachim Reimann, Frauke Baymann und Boran Kartal: Discovery of a functional, contracted heme-binding motif within a multiheme cytochrome. The Journal of Biological Chemistry, Vol. 294, Issue 45, 16953-16965, November 8, 2019
DOI: 10.1074/jbc.RA119.010568

Weitere Informationen:

https://www.mpi-bremen.de/Page4233.html

Dr. Fanni Aspetsberger | Max-Planck-Institut für Marine Mikrobiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Erste SARS-CoV-2-Genome aus Österreich veröffentlicht
03.04.2020 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Die Mimik der Mäuse
03.04.2020 | Max-Planck-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: Quantenimaging: Unsichtbares sichtbar machen

Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern. Ein Forscherteam am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena hat eine Quantenimaging-Lösung entwickelt, die in extremen Spektralbereichen und mit weniger Licht genaueste Einblicke in Gewebeproben ermöglichen kann.

Optische Analyseverfahren wie Mikroskopie und Spektroskopie sind in sichtbaren Wellenlängenbereichen schon äußerst effizient. Doch im Infrarot- oder...

Im Focus: Sensationsfund: Spuren eines Regenwaldes in der Westantarktis

90 Millionen Jahre alter Waldboden belegt unerwartet warmes Südpol-Klima in der Kreidezeit

Ein internationales Forscherteam unter Leitung von Geowissenschaftlern des Alfred-Wegener-Institutes, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI)...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Hygienische und virenfreie Oberflächen: Smartphones schnell und sicher mit Licht desinfizieren

06.04.2020 | Materialwissenschaften

Zuwachs bei stationären Batteriespeichern

06.04.2020 | Energie und Elektrotechnik

Erste SARS-CoV-2-Genome aus Österreich veröffentlicht

03.04.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics