Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Energie für chemische Barrieren

13.06.2017

Wissenschaftler des Leibniz-Instituts für Pflanzenbiochemie klären zentralen Kohlenstoff- und Energiestoffwechsel von glandulären Trichomen auf.

Die Brennnessel lehrt es uns schmerzhaft: Pflanzen können eine Vielzahl an Wirkstoffen bilden, mit denen sie Fraßfeinde und Insekten vertreiben. Die Biosynthese der Abwehrstoffe erfolgt bei etwa 30 Prozent aller Landpflanzen in kleinen Drüsenhaaren auf Blättern und Stängeln, den sogenannten glandulären Trichomen. Glanduläre Trichome sind hocheffiziente pflanzliche Wirkstofffabriken.


Glanduläre Trichome der Kulturtomate Solanum lycopersicum (A) und einer wildwachsenden Art, Solanum habrochaites (C). Rechts: mikroskopische Aufnahmen.

Foto: IPB

Für die Produktion ihrer Inhaltsstoffe benötigen sie sehr viel Energie und einen großen Pool an Kohlenstoffverbindungen, die als Ausgangsstoffe in die Biosynthesereaktionen fließen. Wissenschaftlern des Hallenser Leibniz-Instituts für Pflanzenbiochemie ist es nun gelungen, die Energie- und Stoffwechselflüsse innerhalb der glandulären Trichome von Tomatenpflanzen aufzuklären.

Das Ergebnis ihrer Arbeiten, jüngst in Plant Cell veröffentlicht, mündete in ein erstes allgemeines Modell des zentralen Energie- und Kohlenstoffwechsels in Trichomen. Dabei fanden sich auch erste Hinweise auf genetische Unterschiede zwischen Kultur- und Wildtomaten, die sich offenbar während der Züchtung etablierten und die eingeschränkte Produktion von Abwehrstoffen in Trichomen von Kulturtomaten erklären können.

Auch Minze, Rosmarin und Salbei verfügen neben vielen anderen Pflanzenarten über die produktiven Drüsenhaare. Viele Substanzen, die diesen Pflanzen als Abwehrstoffe dienen, haben für den Menschen einen hohen ökonomischen Wert als pharmazeutische Wirkstoffe, aber auch als Aroma- und Duftstoffe in der Nahrungsmittel- und Kosmetikindustrie. Da diese bioaktiven Substanzen für das direkte Überleben der Pflanze nicht zwingend notwendig sind, zählt man sie zu den sekundären Pflanzenstoffen; ihre Biosynthese erfolgt entsprechend im pflanzlichen Sekundärstoffwechsel. Alle Sekundärstoffe – auch jene, die in Trichomen produziert werden - weisen eine große stoffliche Vielfalt auf; das Spektrum der Inhaltsstoffe kann je nach Pflanzenart stark variieren.

Während es bereits einige Studien gibt zu artspezifischer Zusammensetzung und Synthesewegen der Trichom-Sekundärstoffe, wurde bisher nie geklärt, aus welchen Quellen die Drüsenhaare die Energie und auch die nötigen Kohlenstoff-Grundbausteine für ihre extreme Stoffwechselaktivität beziehen. Diese Lücke wurde nun durch die Hallenser Pflanzenexperten um Professor Alain Tissier geschlossen. In ihrer umfassenden Analyse fanden die Wissenschaftler einige Gegebenheiten, die für Trichome spezifisch sind und für den Rest der Pflanze nicht gelten.

Im Experiment wurden generelle Bestandsaufnahmen der aktivierten Gene (Transcriptomics), der vorhandenen Proteine, allem voran der benötigten Stoffwechselenzyme (Proteomics) und der entsprechend produzierten Substanzen (Metaboliten → Metabolomics) an isolierten glandulären Trichomen der Tomate im Vergleich zu normalen Blattzellen ohne Tri­chome durchgeführt. Das Ergebnis dieses Multi-Omics-Ansatzes: Einen Großteil der benötigten Energie produzieren die Trichome selbst mit Hilfe der Photosynthese. Die Energie des Sonnenlichts fließt hier demnach direkt in die Biosynthesewege des Sekundär- und Abwehrstoffwechsels. In den normalen Blattzellen hingegen wird die Energie aus der Photosynthese eher genutzt, um damit das Kohlendioxid aus der Luft in organische Grundverbindungen des Primärstoffwechsels einzubauen.

Grüne Zellen ohne Trichome bauen also mit Hilfe der Photosynthese Zucker, Stärke und Zellwandbestandteile auf. In der Folge produziert die Pflanze Biomasse und wächst. Dieser Beitrag zum Wachstum, die Produktion der organischen Grundverbindungen Zucker und Stärke, ist in den Trichomen stark herabgesetzt. Die Hallenser Pflanzenexperten konnten beweisen, dass die dafür benötigten Enzyme in den Haardrüsen deutlich weniger produziert werden. Zucker wird jedoch auch in Trichomen dringend gebraucht: aus seiner Spaltung gewinnen die Trichomzellen weitere Energie und zudem alle Ausgangsstoffe für die speziellen Biosynthesewege ihres Sekundärstoffwechsels. Mit Hilfe von 13C-Kohlenstoffisotopen wiesen die Wissenschaftler nach, dass die Trichome aus den angrenzenden Blattzellen stetig mit Zucker versorgt werden.

Typisch für Zellen mit hoher metabolischer Aktivität ist zudem die vermehrte Entstehung von reaktiven Sauerstoffverbindungen (ROS), die aufgrund ihrer Reaktionsfreude Zellen und Membranen schädigen. Die Entschärfung dieser Oxidantien erfolgt durch die Oxidation von sehr langkettigen und von mehrfach ungesättigten Fettsäuren, die in glandulären Trichomen in großer Menge hergestellt werden. Dieser Entgiftungsmechanismus scheint für die Haardrüsen spezifisch zu sein. Ein zweiter Neutralisierungsmechanismus über die zentrale Entgiftungssubstanz Glutathion ist sowohl aus Blattzellen als auch aus Trichomzellen bekannt. In Blattzellen wird er allerdings nur nach oxidativem Stress angeschaltet, während er in den Trichomen immer aktiv ist.

Wildtomate versus Kulturtomate
Zusätzlich zu den Analysen von Trichomen und normalen Blattzellen hat man auch den Trichom-Stoffwechsel von Kultur- und Wildtomaten miteinander verglichen. Wildtomaten produzieren in ihren Trichomen sehr viel mehr und etwas andere Sekundärmetaboliten als ihre kultivierten Verwandten. Sie bilden weniger und kleinere Früchte aus als Kulturtomaten, sind aber andererseits wesentlich resistenter gegen Insektenfraß. Im Laufe der Züchtung, die auf Ertrag selektierte, scheint die Kulturtomate jenes Erbgut, das zur Produktion bestimmter Abwehrstoffe führt, verloren zu haben. Im Vergleich der erhobenen Daten fanden sich erste Hinweise auf entsprechende Gene, die bei Wildtomaten noch, bei Kulturtomaten hingegen nicht mehr vorhanden oder weniger aktiv sind. Diese Gene codieren beispielsweise für bestimmte trichominterne Transportproteine, die die zeitnahe Bereitstellung von Ausgangsstoffen am Biosyntheseort erlauben.

Ein besseres Verständnis des trichomalen Stoffwechsels ist erste Voraussetzung für die Züchtung neuer Kultursorten mit erhöhter Resistenz gegen Aggressoren und für die biotechnologische Produktion von wirtschaftlich wichtigen sekundären Pflanzenstoffen in Bakterien oder Hefen.

Originalpublikation:
Gerd U. Balcke, Stefan Bennewitz, Nick Bergau, Benedikt Athmer, Anja Henning, Petra Majovsky, José M. Jiménez-Gómez, Wolfgang Hoehenwarter & Alain Tissier: Multiomics of Tomato Glandular Trichomes Reveals Distinct Features of Central Carbon Metabolism Supporting High Productivity of Specialized Metabolites, Plant Cell 2017, doi:10.1105/tpc.17.00060.

Ansprechpartner:
Prof. Alain Tissier
Leiter der Abteilung Stoffwechsel- und Zellbiologie
Tel.: 0345 5582 1500
alain.tissier@ipb-halle.de

Weitere Informationen:

http://www.ipb-halle.de/oeffentlichkeit/aktuelles/artikel-detail/energie-fuer-ch...

Dipl.Biol. Sylvia Pieplow | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Waldrand oder mittendrin: Das Erbgut von Mausmakis unterscheidet sich je nach Lebensraum
19.07.2018 | Stiftung Tierärztliche Hochschule Hannover

nachricht Infrarotsensor als neue Methode für die Wirkstoffentwicklung
19.07.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Europaweit erste Patientin mit neuem Hybridgerät zur Strahlentherapie behandelt

19.07.2018 | Medizintechnik

Waldrand oder mittendrin: Das Erbgut von Mausmakis unterscheidet sich je nach Lebensraum

19.07.2018 | Biowissenschaften Chemie

Automatisiertes Befüllen von Regalen im Einzelhandel

19.07.2018 | Verkehr Logistik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics