Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Endosporen schlummern in tiefen Meeressedimenten

22.02.2019

Internationales Team weist große Zahl an ruhenden Bakterien in der tiefen Biosphäre nach

Eine Untersuchung von Meeressedimenten aus der ganzen Welt zeigt, dass schlafende bakterielle Endosporen einen signifikanten Anteil an der gesamten mikrobiellen Biomasse ausmachen.


Basis für die Studie sind Sedimentproben, die bei wissenschaftlichen Expeditionen gewonnen wurden.

T. Andrén, ECORD/IODP

Für eine Studie haben Forschende zum ersten Mal ihre Zahl genauer bestimmt. Jetzt wurden die Ergebnisse von Dr. Lars Wörmer vom MARUM – Zentrum für Marine Umweltwissenschaften der Universität Bremen und seinen Koautorinnen und -autoren in der Zeitschrift Science Advances veröffentlicht.

Marine Sedimente beherbergen eine große Masse an Mikroorganismen, darunter sind auch Endosporen. Das sind resistente, ruhende Bakterien, die zur Gruppe der Firmicutes-Bakterien gehören – und sie sind wahre Überlebenskünstler.

Sie können vom Ruhe- in den vitalen Modus wechseln, sobald die Bedingungen in ihrem Lebensraum es zulassen. Ein Team von Forschenden hat jetzt zum ersten Mal die Zellen zahlenmäßig bestimmt.

Ziel von Dr. Lars Wörmer vom MARUM – Zentrum für Marine Umweltwissenschaften der Universität Bremen und seinen Kolleginnen und Kollegen war es, mit den Daten die Diversität an Systemen abzudecken, um so ein globales Verständnis für das Vorkommen von Endosporen zu bekommen. Dafür haben sie Sedimentproben aus allen Teilen der Welt und verschiedenen Tiefen ausgewertet.

„Neben den vegetativen Zellen gibt es weit verbreitet auch Endosporen – vor allem die Küstenzonen sind besonders reich an diesen Überlebenszellen“, sagt Lars Wörmer, Erstautor der Studie.

Bereits seit den 1990er-Jahren ist bekannt, dass in der Tiefsee nicht nur Ödnis herrscht, sondern dass es auch in den marinen Sedimenten Leben gibt. Seitdem arbeiten Forschende daran zu verstehen, wie das Leben der Organismen in der Tiefe funktioniert, an einem lebensfeindlichen und nährstoffarmen Ort. Je tiefer im Meeresboden, desto widriger die Umstände: die Temperatur steigt, es gibt kaum Energiequellen.

Ab einer Tiefe von etwa 25 Metern unter dem Meeresboden gibt es mehr Endosporen als andere lebende Zellen. Mit der Tiefe steigt also die Zahl der ruhenden Zellen. Unklar ist jedoch, ob die Lage im Meeresboden auch Informationen zum geologischen Alter gibt, oder aber ob sich die Endosporen irgendwann während der Anlagerung gebildet haben. „Wir kennen das Alter der Ablagerungen“, sagt Lars Wörmer, „wissen aber nicht, ob die Endosporen ebenso alt sind.“

Um die Sporen nachzuweisen, haben die Forschenden den Biomarker Dipicolinsäure (DPA) genutzt. DPA stabilisiert die Spore. Wenn die Zellen entweder sterben oder aber wieder erwachen, wird DPA ausgeschüttet, ist dann also nicht mehr nachweisbar. Mit diesem Hintergrund konnten Wörmer und seine Kolleginnen gezielt nach DPA suchen. Der Biomarker ist bereits seit den 1960er-Jahren bekannt, allerdings wurde eine passende Analytik für Endosporen in Sedimenten erst 50 Jahre später entwickelt.

Welche ökologische Rolle Endosporen in ihrem Lebensraum einnehmen, ist bislang jedoch noch nicht klar. Die Forschenden vermuten, dass die älteren Endosporen als eine Art Samenbank in der Tiefe existieren und hier die genetische Vielfalt bewahren – bis sie auf ein günstigeres Lebensumfeld treffen und sich reaktivieren.

Gerade das macht für Lars Wörmer die Faszination aus, sich mit der tiefen Biosphäre zu beschäftigen. „Man weiß teilweise gar nicht, was sich in den Meeressedimenten verbirgt – und warum.“ Künftig müssten er und seine Kolleginnen und Kollegen sich mit Überlebensformen, aber ebenso auch mit ihren Aufwachmechanismen beschäftigen.

Die Studie basiert auf mehr als 300 marinen Sedimentproben, die auf insgesamt 15 Schiffsexpeditionen gewonnen wurden, und zwar zwischen 2002 und 2015. Viele der Fahrten wurden im Rahmen des internationalen Bohrprogramms IODP (International Ocean Discovery Program) und dessen Vorgängern realisiert.

Am Projekt sind neben Wörmer zum Beispiel auch Bernhard Viehweger, Rishi R. Adhikari, Martin Könneke und Kai-Uwe Hinrichs (alle vom MARUM) sowie Tatsuhiko Hoshino und Fumio Inagaki (JAMSTEC – Japan Agency for Marine-Earth Science and Technology, Japan) sowie Marshall Bowles (Louisiana Universities Marine Consortium, USA) beteiligt.

MARUM entschlüsselt mit modernsten Methoden und eingebunden in internationale Projekte die Rolle des Ozeans im System Erde – insbesondere im Hinblick auf den globalen Wandel. Es erfasst die Wechselwirkungen zwischen geologischen und biologischen Prozessen im Meer und liefert Beiträge für eine nachhaltige Nutzung der Ozeane. Das MARUM umfasst den Exzellenzcluster „Der Ozeanboden – unerforschte Schnittstelle der Erde“ sowie weitere nationale und internationale Forschungsprojekte angesiedelt.

Wissenschaftliche Ansprechpartner:

Dr. Lars Wörmer
Telefon: 0421 218 65710
E-Mail: lwoermer@marum.de

Originalpublikation:

Lars Wörmer, Tatsuhiko Hoshino, Marshall W. Bowles, Bernhard Viehweger,
Rishi R. Adhikari, Nan Xiao, Go-ichiro Uramoto, Martin Könneke, Cassandre S. Lazar,
Yuki Morono, Fumio Inagaki, Kai-Uwe Hinrichs: Microbial dormancy in the marine subsurface: Global endospore abundance and response to burial; Science Advances 2019, DOI: 10.1126/sciadv.aav1024

Weitere Informationen:

http://www.marum.de/Entdecken/Endosporen-schlummern-in-tiefen-Meeressedimenten.h...

Ulrike Prange | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Goldkugel im goldenen Käfig
21.03.2019 | Gesellschaft Deutscher Chemiker e.V.

nachricht Wichtiger Mechanismus der Antigenpräsentation in Wächterzellen des Immunsystems enträtselt
21.03.2019 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetische Mikroboote

Nano- und Mikrotechnologie sind nicht nur für medizinische Anwendungen wie in der Wirkstofffreisetzung vielversprechende Kandidaten, sondern auch für die Entwicklung kleiner Roboter oder flexibler integrierter Sensoren. Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) haben mit einer neu entwickelten Methode magnetische Mikropartikel hergestellt, die den Weg für den Bau von Mikromotoren oder die Zielführung von Medikamenten im menschlichen Körper, wie z.B. zu einem Tumor, ebnen könnten. Die Herstellung solcher Strukturen sowie deren Bewegung kann einfach durch Magnetfelder gesteuert werden und findet daher Anwendung in einer Vielzahl von Bereichen.

Die magnetischen Eigenschaften eines Materials bestimmen, wie dieses Material auf das Vorhandensein eines Magnetfeldes reagiert. Eisenoxid ist der...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Goldkugel im goldenen Käfig

„Goldenes Fulleren“: Liganden-geschützter Nanocluster aus 32 Goldatomen

Forschern ist es gelungen, eine winzige Struktur aus 32 Goldatomen zu synthetisieren. Dieser Nanocluster hat einen Kern aus 12 Goldatomen, der von einer Schale...

Im Focus: Wichtiger Mechanismus der Antigenpräsentation in Wächterzellen des Immunsystems enträtselt

TWINCORE-Forscher entschlüsseln, wie der Transport von Antigenfragmenten auf die Oberfläche von Immunzellen des Menschen reguliert wird

Dendritische Zellen sind die Wächter unserer Immunabwehr. Sie lauern fremden Eindringlingen auf, schlucken sie, zerlegen sie in Bruchstücke und präsentieren...

Im Focus: Selbstheilender Lack aus Maisstärke lässt kleine Kratzer durch Wärme verschwinden

Ein neuer Lack aus Maisstärke ist wegen der besonderen Anordnung seiner Moleküle in der Lage, durch Wärme kleine Kratzer von selbst zu reparieren: Die Vernetzung über ringförmige Moleküle macht das Material beweglich, sodass es die Kratzer ausgleicht und diese wieder verschwinden.

Oberflächliche Mikrokratzer in der Autokarosserie oder auf anderen Hochglanzoberflächen sind harmlos, aber ärgerlich. Gerade im Luxussegment zeichnen sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte nationale Tagung 2019 für Nuklearmedizin in Bremen

21.03.2019 | Veranstaltungen

6. Magdeburger Brand- und Explosionsschutztage vom 25. bis 26.3. 2019

21.03.2019 | Veranstaltungen

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Magnetische Mikroboote

21.03.2019 | Physik Astronomie

Protein BRCA1 als Stress-Coach

21.03.2019 | Biowissenschaften Chemie

Möglicher Ur-Stoffwechsel in Bakterien entdeckt

21.03.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics