Elternkonflikt auch bei Pflanzen: Wie die Mutter die väterlichen Gene zum Schweigen bringt

Dies weist ein internationales Forschungsteam unter der Beteiligung von Pflanzengenetikern der Universität Zürich mit Hilfe der «Next Generation Sequencing»-Technologie erstmals nach. Der neu entdeckte Mechanismus könnte für die Aufrechterhaltung der Artgrenze verantwortlich sein und für die Entwicklung von neuem Saatgut eine Schlüsselrolle spielen.

Die eine Hälfte des Erbgutes stammt von der Mutter, die andere vom Vater, und beide leisten ihren Beitrag zur Entwicklung der Nachkommen. So hat es gemäss Lehrmeinung zu sein, und so ist es auch tatsächlich ab einem fortgeschrittenen Entwicklungstand des pflanzlichen Embryos.

Doch ganz zu Beginn der Embryonalentwicklung sieht es anders aus: In der Frühphase – also vom befruchteten Ei bis ins globuläre Stadium – sind vor allem die mütterlichen Gene aktiv. Mütterliche Faktoren kontrollieren grösstenteils die Entwicklung und bringen die väterlichen Gene aktiv zum Schweigen.

Dieses überraschende Resultat publizierte ein internationales Forschungsteam unter der Leitung von Pflanzengenetikern der Universität Zürich und der Universität Montpellier kürzlich im renommierten amerikanischen Wissenschaftsmagazin «Cell».

Stummgeschaltete väterliche Gene

Für ihre Untersuchungen kreuzten die Forscher zwei genetisch gut unterscheidbare Rassen der Modellpflanze Arabidopsis thaliana (Ackerschmalwand) und analysierten den Beitrag der mütterlichen und väterlichen Gene unmittelbar nach der ersten Zellteilung. Molekulargenetische Untersuchungen an Pflanzenembryonen in dieser frühen Phase sind ausgesprochen schwierig auszuführen. Aus diesem Grund beschränkten sich bisher viele Untersuchungen auf bereits weiter entwickelte Embryonen.

Doch Ueli Grossniklaus, Professor für Pflanzengenetik an der Universität Zürich, hat eine Vorliebe für schwierig zu analysierende Entwicklungsstadien und kann diese dank neuester Technologie wie des «Next Generation Sequencing» auch untersuchen. Die Wissenschaftler konnten nachweisen, dass in der Frühphase der Embryonalentwicklung überwiegend die mütterlichen Gene aktiv sind.

Die Mutter kontrolliert mittels sogenannt kleiner Ribonukleinsäure-Moleküle (siRNAs) die väterlichen Gene und hält diese für eine gewisse Zeit inaktiv bzw. bringt sie zum Schweigen. Im Laufe der weiteren Embryogenese werden die väterlichen Gene dann sukzessive eingeschaltet bzw. aktiviert, was ebenfalls von mütterlichen Faktoren abhängt. Für die Forschung kommt diese Erkenntnis überraschend, nahm man doch bisher an, dass die Funktion von siRNAs darin besteht, sogenannte hüpfende Gene (Transposons) in Schach zu halten.

Das vorübergehende Stummschalten der väterlichen Gene am Anfang der Embryogenese ist gemäss Grossniklaus aus Sicht der Mutterpflanze sinnvoll: Die Mutterpflanze investiert beträchtliche Ressourcen, um Samen zu produzieren. Bevor sie die dafür nötigen Ressourcen einsetzt, wird das männliche Genom auf seine Kompatibilität kontrolliert. Wenn das väterliche Genom zu weit entfernt ist, zum Beispiel von einer anderen Art stammt, stirbt der Pflanzenembryo ab. Die Interessen von mütterlicher und väterlicher Pflanze stehen am Anfang der Embryogenese in einem gewissen Widerspruch. Die pollenspendene, väterliche Pflanze hat das Interesse, dass ihre Nachkommen möglichst viele Ressourcen von der Mutterpflanze erhalten. Die weibliche Pflanze ist dagegen an möglichst gut kompatiblem Erbmaterial interessiert, um keine Ressourcen zu verschwenden. «Wir haben es mit einem klassischen Elternkonflikt zu tun», fasst Ueli Grossniklaus den Zielkonflikt zusammen.

Mütterliche Kontrolle gewährleistet das Aufrechterhalten der Artgrenzen

Die mütterlichen Gene kontrollieren und steuern die frühe Embryogenese. Bei Inkompatibilität sterben die Embryonen ab und eine Befruchtung mit Pollen verwandter Pflanzenarten ist nicht erfolgreich. Der von diesem internationalen Team entdeckte Mechanismus spielt somit möglicherweise für den Erhalt der Artgrenzen eine Rolle. Er liefert auch eine mögliche Erklärung dafür, weshalb Versuche Wildformen und Kulturpflanzen miteinander zu kreuzen – zum Beispiel um bei Wildpflanzen vorhandene Krankheitsresistenzen auf Kulturpflanzen zu übertragen – oft bereits in der frühen Embryogenese scheitern. Eine grosse Distanz zwischen mütterlichem und väterlichem Erbgut wird durch diesen Mechanismus erkannt, und die weitere Entwicklung des Embryos gestoppt. Die kommerziellen Entwickler von neuen Saatgutlinien werden sich somit die Frage stellen, ob und wie sich die mütterliche Kontrolle in der Frühphase der pflanzlichen Embryogenese umgehen lässt.

Literatur:
Daphné Autran, Célia Baroux, Michael T. Raissig, Thomas Lenormand, Michael Wittig, Stefan Grob, Andrea Steimer, Matthias Barann, Ulrich C. Klostermeier, Olivier Leblanc, Jean-Philippe Vielle-Calzada, Philip Rosenstiel,, Daniel Grimanelli und Ueli Grossniklaus, Maternal Epigenetic Pathways Control Parental Contributions to Arabidopsis Early Embryogenesis, Cell (2011), doi: 10.1016/j.cell.2011.04014.
Kontakt:
Prof. Ueli Grossniklaus
Universität Zürich
Institut für Pflanzenbiologie
Tel. +41 44 634 82 40
E-Mail: grossnik@botinst.uzh.ch

Media Contact

Beat Müller idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer