Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektrokatalyse: Wasserspalter mit Multi Tasking-Talent - Edelmetall-freier Katalysator entwickelt

15.03.2019

Die elektrokatalytische Wasserspaltung gilt als Schlüsseltechnologie für die Entwicklung von Brennstoffzellen. Ulmer Chemiker haben nun einen Edelmetall-freien Komposit-Katalysator entwickelt, der bei der Spaltung von Wasser sowohl für die Entwicklung von Sauerstoff als auch von Wasserstoff eingesetzt werden kann. Veröffentlicht wurden die Ergebnisse des Projekts in der renommierten Fachzeitschrift „Angewandte Chemie“.

Brennstoffzellen eignen sich hervorragend zur Speicherung von Wind- und Sonnenenergie. Sie sind daher ein bedeutender Baustein der Energiewende. Der dafür benötigte Wasserstoff wird durch die elektrokatalytische Spaltung von Wasser gewonnen, bei der auch Sauerstoff frei wird. Einen großen Schritt zur Optimierung dieser elektrochemischen Schlüsselreaktion ist nun Forschenden der Universität Ulm gelungen.


Doktorandin Dandan Gao experimentiert mit einem speziellen Katalysatormaterial aus einem edelmetallfreien Metalloxid-Gemisch

Foto: Andrea Weber-Tuckermann / Uni Ulm

Die Chemiker aus dem Institut für Anorganische Chemie I haben einen Edelmetall-freien Komposit-Katalysator entwickelt, der in derselben chemischen Reaktion sowohl für die Entwicklung von Sauerstoff als auch von Wasserstoff eingesetzt werden kann. Veröffentlicht wurden die Ergebnisse des Projekts in der renommierten Fachzeitschrift „Angewandte Chemie“.

„Die elektrochemische Reaktion bei der Wasserspaltung läuft in zwei chemischen Halbreaktionen ab. Einerseits wird dabei Wasserstoff ausgegast und andererseits Sauerstoff“, erklärt Professor Carsten Streb vom Institut für Anorganische Chemie I an der Universität Ulm. In herkömmlichen elektrochemischen Katalysatorsystemen kommen bei diesen beiden Halbreaktionen unterschiedliche Materialien zum Einsatz.

Ulmer Chemiker aus Professor Strebs Labor haben nun in Kooperation mit Materialwissenschaftlern aus China ein Edelmetall-freies Komposit-Material entwickelt, das sich in beiden Teilreaktionen gleichermaßen bewährt hat.

Der Vorteil: „Das bi-funktionale Katalysator-Material vereinfacht das Design und die Fertigung von Systemen für die elektrochemische Wasserspaltung. Außerdem können so wechselseitige Verunreinigungen und Materialunverträglichkeiten vermieden werden, die bis zur „Vergiftung“ des Katalysators reichen“, erklärt Dandan Gao. Die Ulmer Doktorandin ist Erstautorin der Studie.

Um elektrochemische Wasserspaltungssysteme im industriellen Maßstab realisieren zu können, braucht es Katalysatoren, die ohne Edelmetalle wie Platin oder Iridium auskommen. Trotzdem müssen diese eine hohe Reaktivität aufweisen sowie sehr stabil und langlebig sein. Die Ulmer Chemiker haben nun ein modulares Design für ein solches Edelmetall-freies bi-funktionales Verbundmaterial entwickelt, das diese Voraussetzungen erfüllt.

„Wir verwenden dafür sowohl hochreaktives Kobalt-Oxid als auch halbleitendes Kupfer-Oxid, das den Elektronentransport verstärken soll. Dritter im Verbund ist Wolfram-Oxid, das das Katalysator-Material strukturell und chemisch stabilisieren soll, um es langlebiger zu machen“, erklärt Gao.

Mit Hilfe einer hydrothermalen Reaktion wird dieses Metall-Oxid-Gemisch auf einer Elektrode aus herkömmlichem makroporösem Kupferschaum abgeschieden. Der Kupferschaum ist elektrisch sehr leitfähig und hat eine große Reaktionsoberfläche. Zugleich sind dessen Mikrostrukturen gut zugänglich für den Elektrolyten und erleichtern damit die Freisetzung der Gase an der Elektrodenoberfläche.

„Die größte Herausforderung bestand darin, die Metall-Oxide mit ihren unterschiedlichen Funktionalitäten auf der Oberfläche der Kupferschaum-Elektrode zu verankern. Und zwar so, dass das synthetisierte Material sowohl chemisch, als auch mechanisch und elektrisch stabil bleibt“, so Projektleiter Streb. Mit dem Ergebnis sind die Wissenschaftler sehr zufrieden.

So wurde mit volumetrischen Messungen die katalytische Leistungsfähigkeit untersucht: Mit elektronenmikroskopischen und röntgenspektroskopischen Analysen konnten nicht nur die Materialstrukturen im Nano- und Mikrometerbereich sichtbar gemacht werden, sondern auch die chemische Beschaffenheit, die kristalline Struktur und die räumliche Verteilung der unterschiedlichen Metall-Oxid-Nanostrukturen nachgewiesen werden.

In den rasterelektronenmikroskopischen Aufnahmen kann man beispielsweise die Nadelstruktur der sehr leitfähigen Nanodrähte aus Kupferoxid hervorragend erkennen. Beteiligt an dem Projekt waren auch Elektronenmikroskopie-Experten um die Ulmer Professorin Ute Kaiser. Gefördert wurde das Projekt mit Mitteln der Deutschen Forschungsgemeinschaft aus dem Sonderforschungsbereich TRR 234 „CataLight“. Weitere Unterstützer sind die Alexander-von-Humboldt-Stiftung, die Helmholtz-Gemeinschaft und das Chinese Scholarship Council.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Carsten Streb, Institut für Anorganische Chemie I, Tel.: 0731 / 50 23867, E-Mail: carsten.streb@uni-ulm.de

Originalpublikation:

Modular design of noble metal-free mixed metal oxide electrocatalysts for complete water splitting. Dandan Gao, Rongji Liu, Johannes Biskupek, Ute Kaiser, Yu-Fei Song, Carsten Streb. In: Angewandte Chemie, first published 07 February 2019,
https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201900428

Andrea Weber-Tuckermann | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-ulm.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Die Definierung des Zentromers – Erforschung der Rolle von Kinetochoren bei der Zellteilung
21.10.2019 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

nachricht Bluteiweiss schützt vor neurologischen Schäden nach Hirnblutung
21.10.2019 | Universität Zürich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburger Forschenden gelingt die erste Synthese eines kationischen Tetraederclusters in Lösung

Hauptgruppenatome kommen oft in kleinen Clustern vor, die neutral, negativ oder positiv geladen sein können. Das bekannteste neutrale sogenannte Tetraedercluster ist der weiße Phosphor (P4), aber darüber hinaus sind weitere Tetraeder als Substanz isolierbar. Es handelt sich um Moleküle aus vier Atomen, deren räumliche Anordnung einem Tetraeder aus gleichseitigen Dreiecken entspricht. Bisher waren neben mindestens sechs neutralen Versionen wie As4 oder AsP3 eine Vielzahl von negativ geladenen Tetraedern wie In2Sb22– bekannt, jedoch keine kationischen, also positiv geladenen Varianten.

Ein Team um Prof. Dr. Ingo Krossing vom Institut für Anorganische und Analytische Chemie der Universität Freiburg ist es gelungen, diese positiv geladenen...

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitales-Krankenhaus – wo bleibt der Mensch?

21.10.2019 | Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Digitales-Krankenhaus – wo bleibt der Mensch?

21.10.2019 | Veranstaltungsnachrichten

Das Stromnetz fit für E-Mobilität machen

21.10.2019 | Förderungen Preise

Kompakt, effizient, robust und zuverlässig: FBH-Entwicklungen für den Weltraum

21.10.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics