Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einzelne Rezeptoren auf der Arbeit

19.10.2017

Mit einer revolutionären Mikroskopie-Technik hat ein internationales Team von Wissenschaftlern erstmals einzelne Rezeptoren, die die Wirkung von Hormonen und Medikamenten vermitteln, live bei der Arbeit beobachtet. Dabei stießen sie auf überraschende Details.

Bei der Suche nach neuen Medikamenten gegen Krankheiten wie Bluthochdruck, Asthma oder Parkinson zählen sogenannte G-Protein-gekoppelte Rezeptoren (GPCRs) zu den ganz besonders „heißen Kandidaten“.


Rezeptoren (grün) und G-Proteine (magenta) wandern über die Oberfläche einer lebenden Zelle, bevor sie an sogenannten „Hot Spots“ auf der Zellmembran aufeinander treffen.

Foto: AG Calebiro


Hot Spot, an dem Rezeptoren und G-Proteine zusammen kommen. Das Zytoskelett und andere strukturelle Komponenten der Zellmembran konzentrieren beide in speziellen Nanodomänen.

Foto: AG Calebiro

Schließlich sind sie für viele Hormone und Neurotransmitter der Ansatzpunkt, über den diese auf die Aktivität von Zellen einwirken. Dementsprechend greifen heute schon rund die Hälfte aller verschreibungspflichtigen Medikamente an diesen Rezeptoren an – und helfen so bei der Behandlung weitverbreiteter Krankheiten.

Damit sie Prozesse im Zellinneren in Gang setzen und steuern können, müssen – wie der Name verrät – Rezeptoren und G-Proteine zunächst zueinander finden. Wie und wo das passiert, war lange Zeit Gegenstand zahlreicher Hypothesen, die jedoch nie bestätigt werden konnten.

Einem internationalen Team von Wissenschaftlern aus Universitäten in Würzburg, Birmingham und Wrocław ist es jetzt erstmalig gelungen, die „Kontaktanbahnung“ zwischen einzelnen Rezeptoren und G-Proteinen und das weitere Geschehen live auf der Oberfläche von lebenden Zellen zu beobachten und zu untersuchen.

Publikation in Nature

Das Ergebnis: „Wir konnten zeigen, dass Rezeptoren und G-Proteine sich bevorzugt an speziellen Orten auf der Plasmamembran treffen, die wir als ‚Hot Spots‘ bezeichnen“, erklärt Professor Davide Calebiro, Hauptautor der Studie, die jetzt in der renommierten Fachzeitschrift Nature erschienen ist. Calebiro forscht am Institut für Pharmakologie und Toxikologie und am Bio-Imaging Center der Universität Würzburg sowie am Centre of Membrane Proteins and Receptors der Universitäten von Birmingham und Nottingham.

Mit Hilfe einer modifizierten Variante der Einzelmolekül-Mikroskopie war es den Wissenschaftlern möglich, diese detaillierten Beobachtungen an der Zellmembran zu machen. Dabei konnten sie auch sehen, dass Rezeptoren und G-Proteine in der Regel nur vorübergehend miteinander in Kontakt stehen – ihr Zusammenwirken war in der Mehrzahl der Fälle nach nur einer Sekunde wieder beendet. Weiter fanden die Forscher heraus, dass das Zytoskelett der Zelle bei der Bildung der Hot Spots eine wichtige Rolle spielt. Diese Treffpunkte auf der Zelloberfläche waren bisher unbekannt gewesen.

Neue Technik ermöglicht neue Einsichten

Calebiro und seine Ko-Autoren sind davon überzeugt, dass Hot Spots Einfluss auf die Aktivierung der G-Proteine ausüben, indem sie sowohl die Geschwindigkeit als auch die Effizienz dieser Prozesse steigern. Gleichzeitig sorgen sie dafür, dass die Signalübertragung räumlich beschränkt werden kann. Die neuen Erkenntnisse zeigen nach Meinung der Wissenschaftler, dass „anscheinend einfache biologische Prozesse äußerst komplex sein können, wenn man sie aus der Nähe betrachtet“.

Dementsprechend gehen sie davon aus, dass die derzeitigen „außergewöhnlichen Fortschritte“ bei den bildgebenden Verfahren zu einem deutlich vertieften Verständnis dieser Prozesse führen werden.

Ihre jetzt gewonnenen Erkenntnisse bieten nach ihren Worten die Chance auf neue therapeutische Ansätze. „Bisher gängige Wirkstoffe arbeiten so, dass sie die Rezeptoren entweder blockieren oder aktivieren“, erklärt Davide Calebiro. In Zukunft könnte es möglich sein, selektiver auf diese Prozesse einzuwirken – beispielsweise indem man die Mobilität von Rezeptoren und G-Proteinen auf der Zellmembran oder deren Interaktionen an den Hot Spots manipuliert.

Diese Studie wurde unterstützt von der Deutschen Forschungsgemeinschaft (DFG).

Single-molecule imaging reveals receptor–G protein interactions at cell surface hot spots. Titiwat Sungkaworn, Marie-Lise Jobin, Krzysztof Burnecki, Aleksander Weron, Martin J. Lohse & Davide Calebiro. Nature, published online 18 October 2017, doi:10.1038/nature24264

Kontakt

Prof. Dr. med. Dr. Davide Calebiro, T: +49 931 31-80067, davide.calebiro@toxi.uni-wuerzburg.de

Weitere Informationen:

Simultane Visualisierung und Verfolgung einzelner Rezeptoren (grün) und G-Proteine (magenta) an der Oberfläche einer lebenden Zelle. Die Rezeptoren und G-Proteine wandern umher, bevor sie an sogenannten "Hot Spots" auf der Zellmembran aufeinandertreffen. (Video: AG Calebiro)

https://www.youtube.com/watch?v=7vsc9DnGhsM

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht CeMM Studie gibt Einblick in die Funktionsweise eines wichtigen Genregulators
01.06.2020 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Wie sich Nervenzellen zum Abruf einer Erinnerung gezielt reaktivieren lassen
29.05.2020 | Universität Heidelberg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartiges Covid-19-Schnelltestverfahren auf Basis innovativer DNA-Polymerasen entwickelt

Eine Forschungskooperation der Universität Konstanz unter Federführung von Professor Dr. Christof Hauck (Fachbereich Biologie) mit Beteiligung des Klinikum Konstanz, eines Konstanzer Diagnostiklabors und des Konstanzer Unternehmens myPOLS Biotec, einer Ausgründung aus der Arbeitsgruppe für Organische Chemie / Zelluläre Chemie der Universität Konstanz, hat ein neuartiges Covid-19-Schnelltestverfahren entwickelt. Dieser Test ermöglicht es, Ergebnisse in der Hälfte der Zeit zu ermitteln – im Vergleich zur klassischen Polymerase-Ketten-Reaktion (PCR).

Die frühe Identifikation von Patienten, die mit dem neuartigen Coronavirus (SARS-CoV-2) infiziert sind, ist zentrale Voraussetzung bei der globalen Bewältigung...

Im Focus: Textilherstellung für Weltraumantennen startet in die Industrialisierungsphase

Im Rahmen des EU-Projekts LEA (Large European Antenna) hat das Fraunhofer-Anwendungszentrum für Textile Faserkeramiken TFK in Münchberg gemeinsam mit den Unternehmen HPS GmbH und Iprotex GmbH & Co. KG ein reflektierendes Metallnetz für Weltraumantennen entwickelt, das ab August 2020 in die Produktion gehen wird.

Beim Stichwort Raumfahrt werden zunächst Assoziationen zu Forschungen auf Mond und Mars sowie zur Beobachtung ferner Galaxien geweckt. Für unseren Alltag sind...

Im Focus: Biotechnologie: Enzym setzt durch Licht neuartige Reaktion in Gang

In lebenden Zellen treiben Enzyme biochemische Stoffwechselprozesse an. Auch in der Biotechnologie sind sie als Katalysatoren gefragt, um zum Beispiel chemische Produkte wie Arzneimittel herzustellen. Forscher haben nun ein Enzym identifiziert, das durch die Beleuchtung mit blauem Licht katalytisch aktiv wird und eine Reaktion in Gang setzt, die in der Enzymatik bisher unbekannt war. Die Studie ist in „Nature Communications“ erschienen.

Enzyme – in jeder lebenden Zelle sind sie die zentralen Antreiber für biochemische Stoffwechselprozesse und machen dort Reaktionen möglich. Genau diese...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: Innovative Sensornetze aus Satelliten

In Würzburg werden vier Kleinst-Satelliten auf ihren Start vorbereitet. Sie sollen sich in einer Formation bewegen und weltweit erstmals ihre dreidimensionale Anordnung im Orbit selbstständig kontrollieren.

Wenn ein Gegenstand wie der Planet Erde komplett ohne tote Winkel erfasst werden soll, muss man ihn aus verschiedenen Richtungen ansehen und die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gebäudewärme mit "grünem" Wasserstoff oder "grünem" Strom?

26.05.2020 | Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wie sich Nervenzellen zum Abruf einer Erinnerung gezielt reaktivieren lassen

29.05.2020 | Biowissenschaften Chemie

Wald im Wandel

29.05.2020 | Agrar- Forstwissenschaften

Schwarzer Stickstoff: Bayreuther Forscher entdecken neues Hochdruck-Material und lösen ein Rätsel des Periodensystems

29.05.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics