Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einzeller mit Durchblick: Wie Bakterien „sehen“

11.02.2016

Ein 300 Jahre altes Rätsel der Biologie ist geknackt. Wie eine internationale Forschergruppe aus Deutschland, Großbritannien und Portugal herausgefunden hat, nutzen Cyanobakterien – weltweit vorkommende mikroskopisch kleine Einzeller – das Funktionsprinzip des Linsenauges, um Licht wahrzunehmen und sich darauf zuzubewegen. Der Schlüssel zu des Rätsels Lösung war eine Idee aus Karlsruhe: Jan Gerrit Korvink, Professor am KIT und Leiter des Instituts für Mikrostrukturtechnik (IMT) am KIT, nutzte Siliziumplatten und UV-Licht, um den Brechungsindex der Einzeller zu messen.

Cyanobakterien bevölkern die Erde schon seit mehr als 2,5 Milliarden Jahren und kommen überall dort vor, wo es Licht gibt: im Eis, in Wüsten, Flüssen und Seen, aber auch an Hauswänden und in Aquarien. Sie betreiben Fotosynthese und gewinnen mithilfe von Licht ihre Energie.


Augapfel im Mini-Format: Das Modell eines Cyanobakteriums zeigt, wie das Licht auf dem Weg durch die Zelle in einem Punkt gebündelt wird.

(Bild: Ronald Kampmann/KIT)

In den Ozeanen, die etwa 70 Prozent der Erdoberfläche bedecken, gehören sauerstoffproduzierende Cyanobakterien zu den wichtigsten fotosynthetisch aktiven Organismen und bilden somit einen Grundpfeiler der Biosphäre.

Licht ist als zentrale Energiequelle für Cyanobakterien überlebenswichtig. Obwohl sie nur aus einer einzigen Zelle bestehen, sind sie in der Lage, direkt und präzise auf eine Lichtquelle zuzuströmen. Doch wie genau diese Lichtwahrnehmung funktioniert, war seit 300 Jahren – also seit es Mikroskope gibt – ein Rätsel. Bis heute.

Wie Forscherinnen und Forscher des KIT, der Universität Freiburg, der Queen Mary University London (QMUL) und weiterer Institutionen aus Großbritannien und Portugal herausgefunden haben, funktionieren Cyanobakterien wie winzige Linsenaugen, können so die Lichtrichtung wahrnehmen und darauf reagieren. Die Studie wurde nun in der wissenschaftlichen Zeitschrift „eLIFE“ veröffentlicht.

Eine ungewöhnliche Idee

„Die Zusammenarbeit begann bei einem Mittagessen in Freiburg“, sagt Jan Gerrit Korvink, Leiter des Instituts für Mikrostrukturtechnik (IMT) am KIT. „Conrad Mullinieux, Professor an der QMUL, besuchte gerade die Freiburger Arbeitsgruppe um Professor Annegret Wilde und fragte mich, ob ich einen Weg wüsste, den Brechungsindex eines winzigen Bakteriums zu messen. Der Brechungsindex beschreibt eine wesentliche optische Eigenschaft von Linsen, die das Licht brechen.“

„Zunächst musste ich Conrad Mullinieux enttäuschen: Bakterien mit einem Durchmesser von 3 Mikrometern – also 3 Millionsteln eines Meters – sind so klein, dass schlicht geeignete Geräte fehlen, um so eine Messung vorzunehmen. Doch die Frage ließ mir keine Ruhe. Und schließlich kam mir eine Idee“, erklärt der Professor.

Korvink und die Wissenschaftlerinnen und Wissenschaftler seines Teams am KIT beschichteten eine flache, etwa 10 Zentimeter durchmessende Scheibe aus Silizium mit einer extrem dünnen Schicht eines Photo-Polymers, das aushärtet, wenn es ultraviolettem Licht ausgesetzt wird. Dann platzierten sie einige Cyanobakterien auf dem Polymer und ließen UV-Licht auf die Platte fallen.

„Überall, wo keine Bakterien platziert waren, fiel das Licht gleichmäßig auf die Scheibe und auch das Polymer härtete gleichmäßig aus. Aber in Bereichen mit Bakterien, wurde das Licht gebündelt. Es formte einen konzentrierten Nanojet aus Photonen, so dass das Polymer unterhalb der Bakterien in einem bestimmten Muster aushärtete“, erläutert Jan Gerrit Korvink.

Im nächsten Schritt fixierten die Forscherinnen und Forscher des KIT das Photopolymer chemisch und bestimmten die Oberflächenstruktur mit einem Rasterkraftmikroskop. So konnten sie genau nachvollziehen, wie die Bakterien das Licht gebrochen haben. „Schließlich konnten wir mithilfe einer Simulation die genauen Lichtbündelungseigenschaften von Cyanobakterien bestimmen und vorhersagen.“

Das erste „Auge“ der Evolutionsgeschichte?

In weiteren Untersuchungen konnte das internationale Forscherteam bestätigen, dass ein einzelnes Cyanobakterium tatsächlich wie ein winziger Augapfel funktioniert. Das Licht trifft auf die Oberfläche der runden Einzeller, wo es wie durch eine mikroskopisch kleine Linse gebrochen wird. Dadurch entsteht ein Brennpunkt auf der gegenüberliegenden Seite der Zelle. Dies aktiviert im Bereich des Lichtpunkts winzige, fadenförmige Fortsätze außerhalb der Zelle, die das Bakterium in Lichtrichtung vorwärtstreiben.

„Cyanobakterien sind die ersten bekannten Organismen, die wir aus fossilen Funden kennen“, sagt Jan Gerrit Korvink. „In einer – zugegeben – sehr primitiven Form funktionieren die Bakterienzellen wie winzige Augäpfel. Möglicherweise war es also das erste Mal in der Evolutionsgeschichte, dass sich mit der Entstehung der frühen Cyanobakterien ein mit dem Linsenauge vergleichbarer Mechanismus zur Lichtwahrnehmung entwickelt hat. Ein spannender Gedanke!“

Originalveröffentlichung:

„Cyanobacteria use micro-optics to sense light direction“; Nils Schuergers, Tchern, Ronald Kampmann, Markus V. Meissner, Tiago Esteves, Maja Temerinac-Ott, Jan G. Korvink, Alan R. Lowe, Conrad W. Mullineaux, Annegret Wilde;

DOI: http://dx.doi.org/10.7554/eLife.12620

Weiterer Kontakt:
Nils Ehrenberg, Presse, Pressereferent, Tel.: +49 721 608-48122, Fax: +49 721 608-45681, E-Mail: nils.ehrenberg@kit.edu

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 400 Mitarbeiterinnen und Mitarbeitern sowie 25 000 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Diese Presseinformation ist im Internet abrufbar unter: http://www.kit.edu

Weitere Informationen:

http://dx.doi.org/10.7554/eLife.12620

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Algen und Kohlefasern die Kohlendioxidkonzentration in der Atmosphäre nachhaltig senken könnten
14.11.2018 | Technische Universität München

nachricht Unbekannter Hemmmechanismus für Humanes Cytomegalievirus entdeckt
14.11.2018 | TWINCORE - Zentrum für Experimentelle und Klinische Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: Optimierung von Legierungswerkstoffen: Diffusionsvorgänge in Nanoteilchen entschlüsselt

Ein Forschungsteam der TU Graz entdeckt atomar ablaufende Prozesse, die neue Ansätze zur Verbesserung von Materialeigenschaften liefern.

Aluminiumlegierungen verfügen über einzigartige Materialeigenschaften und sind unverzichtbare Werkstoffe im Flugzeugbau sowie in der Weltraumtechnik.

Im Focus: Graphen auf dem Weg zur Supraleitung

Doppelschichten aus Graphen haben eine Eigenschaft, die ihnen erlauben könnte, Strom völlig widerstandslos zu leiten. Dies zeigt nun eine Arbeit an BESSY II. Ein Team hat dafür die Bandstruktur dieser Proben mit extrem hoher Präzision ausgemessen und an einer überraschenden Stelle einen flachen Bereich entdeckt. Möglich wurde dies durch die extrem hohe Auflösung des ARPES-Instruments an BESSY II.

Aus reinem Kohlenstoff bestehen so unterschiedliche Materialien wie Diamant, Graphit oder Graphen. In Graphen bilden die Kohlenstoffatome ein zweidimensionales...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

Wer rechnet schneller? Algorithmen und ihre gesellschaftliche Überwachung

12.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungsnachrichten

Die Umgebung macht das Molekül zum Schalter

14.11.2018 | Physik Astronomie

Mit Gold Krankheiten aufspüren

14.11.2018 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics