Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Nervenzelle dient als „Single“ für Studien

15.05.2019

Wenn Erkrankungen des Gehirns erforscht werden, dienen aus Stammzellen gewonnene Nervenzellen häufig als Grundlage. Allerdings sind diese Zellen sehr verschiedenartig und liefern unterschiedliche Ergebnisse. Wissenschaftler weltweit suchen deshalb nach Zellmodellen, die möglichst zu gleichen Resultaten führen. Forscherteams der Universität Bonn, der Vrije Universiteit Amsterdam und des Max-Planck-Instituts für Experimentelle Medizin in Göttingen beschreiben ein Modell, das nur aus einer einzigen menschlichen Nervenzelle besteht und durch Reprogrammierung aus Hautzellen gewonnen wurde. Die beiden Studien sind nun im Fachmagazin „Cell Reports“ erschienen.

Mit dem Verfahren der Zellreprogrammierung lassen sich aus einer Blut- oder Hautprobe so genannte induziert pluripotente Stammzellen (iPS-Zellen) herstellen. Die Körperzellen werden in ein Embryonalstadium zurückversetzt und verfügen dann wieder über alle Möglichkeiten, sich in die unterschiedlichsten Zelltypen weiter zu differenzieren – von der Herzmuskel- bis hin zur Gehirnzelle.


Zellmodell: Eine einzelne Nervenzelle (rot) ist auf einer Schicht von Astrozyten (blau) zu erkennen.

© Dr. Ali Shaib/MPI für Experimentelle Medizin Göttingen

Deshalb sind die Erwartungen an diese Alleskönner groß. „Aus iPS-Zellen produzierte Nervenzellen sind heute das attraktivste Werkzeug für die Erforschung von Erkrankungen des Gehirns und für die Wirkstoffsuche“, sagt Prof. Dr. Oliver Brüstle vom Institut für Rekonstruktive Neurobiologie des Universitätsklinikums Bonn (UKB).

Allerdings sind solche aus iPS-Zellen gewonnene menschliche Nervenzellen sehr verschiedenartig. Je nachdem, welche Zellkulturmethode und welcher Gewinnungsweg gewählt wurden, reagieren sie in Experimenten sehr unterschiedlich.

„Gewünscht ist jedoch ein Zellmodell, das bei Wiederholungen eines Experiments möglichst zu den gleichen Ergebnissen führt“, erläutert Dr. Michael Peitz aus Brüstles Team. Schließlich sollen die Resultate der Studien statistisch abgesichert sein.

Aus diesem Grund entwickelten und testeten die Wissenschaftler des UKB zusammen mit dem Max-Planck-Institut (MPI) für Experimentelle Medizin in Göttingen und der Vrije Universiteit Amsterdam ein Modell, das nur aus einer einzigen Nervenzelle besteht, die aus einer menschlichen iPS-Zelle gewonnen wurde.

Dieser „Single“ sitzt auf Gliazellen, die sich auch im Gehirn in enger Nachbarschaft zu Nervenzellen befinden und diese in ihrer Funktion unterstützen.

Die Nervenzelle führt Selbstgespräche

Die Besonderheit: Die „Single“-Gehirnzelle führt Selbstgespräche, weil sämtliche Fortsätze (Axone), die normalerweise die Verbindung zu anderen Nervenzellen herstellen, zu ihr zurückführen. „Das Zellmodell ist praktisch kurzgeschlossen“, erklärt Dr. Kristina Rehbach, eine der Erstautorinnen der beiden Studien am Institut für Rekonstruktive Neurobiologie des UKB. Damit können die Wissenschaftler die „Single“-Nervenzelle belauschen, wie sie mit sich selbst plaudert.

Die kreisförmige Signalübertragung zwischen Axon und dem jeweiligen Neuron erfolgt über Synapsen. Dabei handelt es sich um Schnittstellen, an denen elektrische Signale eine Ausschüttung von Botenstoffen bewirken, die auf der Empfängerseite wieder zu elektrischen Impulsen führen. Hierbei können die Signale verstärkt oder auch abgeschwächt werden.

Die Wissenschaftler des MPI in Göttingen und der Vrije Universiteit Amsterdam testeten, wie sich dieses Ein-Zell-Modell in Stimulationsexperimenten verhält. Sie verwendeten sowohl Zellen, die im Gehirn für die Erregung zuständig sind, als auch hemmende Nervenzellen.

„Wir konnten zeigen, dass dieses nur aus einer Nervenzellen bestehende Modell in den Funktionstests in hohem Maße reproduzierbare Werte ergibt und damit eine sehr gute Grundlage für Hochdurchsatzexperimente darstellt“, sagt Prof. Dr. Matthijs Verhage von der Vrije Universiteit Amsterdam.

Vielfältige Anwendungsmöglichkeiten

Das Forscherteam sieht vielfältige Anwendungsmöglichkeiten für das „Single“-Nervenzellmodell. Damit lassen sich Krankheiten erforschen. „Ist zum Beispiel ein Protein an einer Synapse durch eine Genmutation verändert, sind die Folgen für die Signalübertragung direkt in diesem Modell beobachtbar“, sagt Prof. Brüstle.

Ein weiterer Vorteil sei, dass sich über die iPS-Reprogrammierung auch direkt aus der Haut oder dem Blut Nervenzellen aus Patienten gewinnen und individuell untersuchen lassen. Über die Erforschung der verschiedensten Erkrankungen des Gehirns ist das Zellmodell damit auch für die Wirkstoffforschung interessant.

„Die hervorragende Zusammenarbeit der verschiedenen Forscherteams in diesem Projekt zeigt, dass die Kombination aus Stammzell-Technologie und funktioneller Untersuchung von Synapsen völlige neue Perspektiven eröffnet“, sagt Prof. Dr. Jeong Seop Rhee vom MPI für Experimentelle Medizin in Göttingen. Alle drei Forscherteams arbeiten in dem europäischen Verbundprojekt COSYN zusammen.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Oliver Brüstle
Institut für Rekonstruktive Neurobiologie
Universitätsklinikum Bonn
Tel. +49 (0)228-6885 500
E-Mail: r.neuro@uni-bonn.de

Originalpublikation:

A Single-Cell Model for Synaptic Transmission and Plasticity in Human iPSC-Derived Neurons, Cell Reports, DOI: 10.1016/j.celrep.2019.04.058

An Autaptic Culture System for Standardized Analyses of iPSC-Derived Human Neurons, Cell Reports, DOI: 10.1016/j.celrep.2019.04.05

Johannes Seiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wundheilung detailliert aufgeschlüsselt
03.06.2020 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Ein einzelnes Gen bestimmt das Geschlecht von Pappeln
03.06.2020 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetische Kristallschichten für den Computer von Morgen

Ist die Elektronik, so wie wir sie kennen, am Ende?

Der Einsatz moderner elektronischer Schaltkreise für immer leistungsfähigere Rechentechnik und mobile Endgeräte stößt durch die zunehmende Miniaturisierung in...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: Neue Messung verschärft altes Problem

Seit Jahrzehnten rätseln Astrophysiker über zwei markante Röntgen-Emissionslinien von hochgeladenem Eisen: ihr gemessenes Helligkeitsverhältnis stimmt nicht mit dem berechneten überein. Das beeinträchtigt die Bestimmung der Temperatur und Dichte von Plasmen. Neue sorgfältige, hoch-präzise Messungen und Berechnungen mit modernsten Methoden schließen nun alle bisher vorgeschlagenen Erklärungen für diese Diskrepanz aus und verschärfen damit das Problem.

Heiße astrophysikalische Plasmen erfüllen den intergalaktischen Raum und leuchten hell in Sternatmosphären, aktiven Galaxienkernen und Supernova-Überresten....

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Neuartiges Covid-19-Schnelltestverfahren auf Basis innovativer DNA-Polymerasen entwickelt

Eine Forschungskooperation der Universität Konstanz unter Federführung von Professor Dr. Christof Hauck (Fachbereich Biologie) mit Beteiligung des Klinikum Konstanz, eines Konstanzer Diagnostiklabors und des Konstanzer Unternehmens myPOLS Biotec, einer Ausgründung aus der Arbeitsgruppe für Organische Chemie / Zelluläre Chemie der Universität Konstanz, hat ein neuartiges Covid-19-Schnelltestverfahren entwickelt. Dieser Test ermöglicht es, Ergebnisse in der Hälfte der Zeit zu ermitteln – im Vergleich zur klassischen Polymerase-Ketten-Reaktion (PCR).

Die frühe Identifikation von Patienten, die mit dem neuartigen Coronavirus (SARS-CoV-2) infiziert sind, ist zentrale Voraussetzung bei der globalen Bewältigung...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gebäudewärme mit "grünem" Wasserstoff oder "grünem" Strom?

26.05.2020 | Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Magnetische Kristallschichten für den Computer von Morgen

03.06.2020 | Informationstechnologie

Wundheilung detailliert aufgeschlüsselt

03.06.2020 | Biowissenschaften Chemie

Ein einzelnes Gen bestimmt das Geschlecht von Pappeln

03.06.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics