Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Ampel für die Wahrnehmung

27.11.2019

caesar-Wissenschaftler der Forschungsgruppe „In Silico Brain Sciences“ entschlüsseln, wie Informationen im Gehirn weitergeleitet werden.

Wir sehen, riechen, hören und spüren Berührungen entlang unserer Haut. In jedem Moment verarbeitet unser Gehirn diese Sinneseindrücke und setzt sie in Wahrnehmung um. Diese Wahrnehmung beeinflusst schlussendlich unser Verhalten. Jener Teil des Gehirns, der sensorische Eindrücke in Wahrnehmung und Verhalten umwandelt, ist der Neokortex. Diese nahezu ausschließlich in Säugetieren zu findende Struktur ist die nur wenige Millimeter dicke Außenschicht des Gehirns. Sie wird daher auch als Großhirnrinde bezeichnet. Doch diese Schicht hat es in sich: Der Neokortex ist vollgepackt mit Nervenzellen, welche sich zu komplexen Netzwerken verbinden. Jeder Kubikmillimeter enthält hunderttausende Nervenzellen, die bis zu einer Milliarde synaptischer Verbindungen miteinander eingehen. Der Neokortex ist somit die komplexeste Struktur, die in der Biologie bekannt ist.


Blick ins Gehirn. Pyramidenbahn-Neurone im Neokortex der Ratte. Die Farben spiegeln die unterschiedlichen Hirnregionen wieder, die in diese Zellen die Ergebnisse neuronaler Berechnungen.

Dr. Marcel Oberlaender / Forschungszentrum caesar

Der Neokortex: die Rechenzentrale des Verhaltens

Die Faszination des Neokortex liegt aber nicht nur in der Struktur, sondern auch in dessen Funktionsweise. Durch das komplexe Zusammenspiel vieler Nervenzellen kombinieren die Netzwerke des Neokortex sensorische Informationen und erstellen daraus ein umfassendes Sinnesbild unserer Umwelt. Die Weiterleitung dieser Ergebnisse kortikaler Berechnungen in tiefere Hirnregionen ist somit ein wesentlicher Baustein unseres Verhaltens.

Die Nervenzellen, welche die Ergebnisse kortikaler Berechnungen weiterleiten, sind seit Jahrzehnten bekannt. So genannte Pyramidenbahn-Neurone empfangen Informationen von tausenden Nervenzellen, die im gesamten Neokortex verteilt sein können, und erstellen daraus ein Ausgangssignal.

Ein Computermodell des Neokortex ermöglicht den Durchblick

Die Erforschung der Funktion neuronaler Netzwerke ist ungemein schwierig. Auch wenn man messen kann, wie Nervenzellen auf sensorische Information reagieren, ist es bislang nicht möglich, die Grundlagen dieser Aktivitätsmuster zu enthüllen.

Um dieses Problem in den Neurowissenschaften zu lösen, kombinierte die caesar-Forschungsgruppe „In Silico Brain Sciences“ Messungen im Tasthaarsystem von Ratten mit Computersimulationen. Dazu wurde die Aktivität aller Nervenzellen, die potentiell zu einem Ausgangssignal während sensorischer Wahrnehmung beitragen, gemessen. Anschließend wurde im Computer simuliert, wie die Pyramidenbahn-Neurone diese Informationen verarbeiten.

Die Ampel für den Neokortex

Diese Simulationen konnten nicht nur die Messungen im lebenden Tier reproduzieren, sondern machten Vorhersagen darüber, welche Nervenzellen im Gehirn die Ausgangsignale des Neokortex steuern. Hierbei machten die Forscher eine spannende Entdeckung. Sie identifizierten spezielle Nervenzellen, welche die Ausgangssignale der Pyramidenbahn-Neurone regeln. Diese Zellen wirken wie eine Verkehrsampel. Erst wenn sie aktiv werden, und „grünes Licht“ geben, leiten die Pyramidenbahn-Neurone Information aus dem Neokortex weiter.

„Das Bild einer Ampel passt recht gut“, sagt Dr. Oberlaender, Leiter der Studie. „Was wir gefunden haben zeigt, dass sensorische Informationen, die den Neokortex erreichen, zunächst hochspezielle Nervenzellen aktivieren. Ohne diese Zellen könnte keine Information den Neokortex verlassen. Diese Zellen schalten Pyramidenbahn-Neurone quasi auf grün.“

Die Entdeckung der „Ampel-Nervenzellen“ enthüllt ein grundlegendes Prinzip, wie sensorische Information in Verhalten umgewandelt wird. Darüber hinaus eröffnet die einzigartige Kombination von Experiment und Simulation neue Möglichkeiten zur Erforschung des Gehirns.

Die Ergebnisse der Studie werden am 26.11.2019 im renommierten Fachjournal „Neuron“ veröffentlicht. (s2)

Pressekontakt:
Sebastian Scherrer
Forschungszentrum caesar
Ludwig-Erhard-Allee 2
53175 Bonn
Tel.: 0228 - 9656 139
sebastian.scherrer@caesar.de

Über das Forschungszentrum caesar
caesar ist ein Forschungsinstitut für Neuroethologie. Hier untersuchen wir, wie aus der kollektiven Aktivität der Vielzahl miteinander vernetzter Neuronen im Gehirn tierisches Verhalten in seiner ganzen Bandbreite entsteht. Unsere Forschung ist interdisziplinär und findet auf verschiedensten Größenebenen statt.

Wissenschaftliche Ansprechpartner:

Dr. Marcel Oberlaender
Forschungszentrum caesar
Max-Planck-Gruppe In Silico Brain Sciences
Ludwig-Erhard-Allee 2
53175 Bonn
Tel.: 0228 - 9656 380
marcel.oberlaender@caesar.de

Originalpublikation:

Egger, Narayanan et al., Cortical Output Is Gated by Horizontally Projecting Neurons in the Deep Layers, Neuron (2019),
https://doi.org/10.1016/j.neuron.2019.10.011

Sebastian Scherrer | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Ampel Brain Sciences Gehirn Neokortex Nervenzellen Neuron Zellen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wiener Forscherteam sorgt für „Feinschliff“ der Genschere CRISPR/Cas9
29.11.2019 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Wann Pflanzen blühen
29.11.2019 | Max-Planck-Institut für Molekulare Pflanzenphysiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleiner, schneller, energieeffizienter – leistungsstarke Bauelemente für den digitalen Wandel

Hocheffiziente Leistungshalbleiter sollen die Voraussetzungen für vielfältige neue Anwendungen schaffen – von der Elektromobilität bis hin zur künstlichen Intelligenz. Darauf zielt das kürzlich gestartete Verbundprojekt „Leistungstransistoren auf Basis von AlN (ForMikro-LeitBAN)“, das vom Ferdinand-Braun-Institut koordiniert wird.

Smarte Energieversorgung, Elektromobilität, breitbandige Kommunikationssysteme und Anwendungen der künstlichen Intelligenz (KI) – die Anzahl miteinander...

Im Focus: KATRIN-Experiment begrenzt die Masse von Neutrinos auf unter 1 Elektronenvolt

Neutrinos spielen durch ihre kleine, aber von Null verschiedene Masse eine Schlüsselrolle in Kosmologie und Teilchenphysik. Seit 2018 soll mit dem KArlsruher TRitium Neutrino Experiment (KATRIN) die Masse von Neutrinos bestimmt werden. Schon nach einer ersten kurzen Neutrino-Messphase konnten die Forscherinnen und Forscher die Masse des Neutrinos auf kleiner als 1 Elektronenvolt (eV) begrenzen, was doppelt so genau ist wie alle bisher durchgeführten teils mehrjährigen Laborexperimente. Das Ergebnis ist diese Woche als Titelgeschichte des renommierten Fachjournals „Physical Review Letters“ veröffentlicht worden. Am Experiment beteiligt ist auch ein Team der Bergischen Universität Wuppertal.

Neben den Photonen, den masselosen elementaren Quanten des Lichts, sind Neutrinos die häufigsten Teilchen im Universum. Neutrinos werden „Geisterteilchen“...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Eine Ampel für die Wahrnehmung

caesar-Wissenschaftler der Forschungsgruppe „In Silico Brain Sciences“ entschlüsseln, wie Informationen im Gehirn weitergeleitet werden.

Wir sehen, riechen, hören und spüren Berührungen entlang unserer Haut. In jedem Moment verarbeitet unser Gehirn diese Sinneseindrücke und setzt sie in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digital Innovation – von AI bis UX

25.11.2019 | Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Hartwalzen mit Methodik: Längere Lebensdauer für Lagerringe

29.11.2019 | Maschinenbau

Wiener Forscherteam sorgt für „Feinschliff“ der Genschere CRISPR/Cas9

29.11.2019 | Biowissenschaften Chemie

Wann Pflanzen blühen

29.11.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics