Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Ampel für die Wahrnehmung

27.11.2019

caesar-Wissenschaftler der Forschungsgruppe „In Silico Brain Sciences“ entschlüsseln, wie Informationen im Gehirn weitergeleitet werden.

Wir sehen, riechen, hören und spüren Berührungen entlang unserer Haut. In jedem Moment verarbeitet unser Gehirn diese Sinneseindrücke und setzt sie in Wahrnehmung um. Diese Wahrnehmung beeinflusst schlussendlich unser Verhalten. Jener Teil des Gehirns, der sensorische Eindrücke in Wahrnehmung und Verhalten umwandelt, ist der Neokortex. Diese nahezu ausschließlich in Säugetieren zu findende Struktur ist die nur wenige Millimeter dicke Außenschicht des Gehirns. Sie wird daher auch als Großhirnrinde bezeichnet. Doch diese Schicht hat es in sich: Der Neokortex ist vollgepackt mit Nervenzellen, welche sich zu komplexen Netzwerken verbinden. Jeder Kubikmillimeter enthält hunderttausende Nervenzellen, die bis zu einer Milliarde synaptischer Verbindungen miteinander eingehen. Der Neokortex ist somit die komplexeste Struktur, die in der Biologie bekannt ist.


Blick ins Gehirn. Pyramidenbahn-Neurone im Neokortex der Ratte. Die Farben spiegeln die unterschiedlichen Hirnregionen wieder, die in diese Zellen die Ergebnisse neuronaler Berechnungen.

Dr. Marcel Oberlaender / Forschungszentrum caesar

Der Neokortex: die Rechenzentrale des Verhaltens

Die Faszination des Neokortex liegt aber nicht nur in der Struktur, sondern auch in dessen Funktionsweise. Durch das komplexe Zusammenspiel vieler Nervenzellen kombinieren die Netzwerke des Neokortex sensorische Informationen und erstellen daraus ein umfassendes Sinnesbild unserer Umwelt. Die Weiterleitung dieser Ergebnisse kortikaler Berechnungen in tiefere Hirnregionen ist somit ein wesentlicher Baustein unseres Verhaltens.

Die Nervenzellen, welche die Ergebnisse kortikaler Berechnungen weiterleiten, sind seit Jahrzehnten bekannt. So genannte Pyramidenbahn-Neurone empfangen Informationen von tausenden Nervenzellen, die im gesamten Neokortex verteilt sein können, und erstellen daraus ein Ausgangssignal.

Ein Computermodell des Neokortex ermöglicht den Durchblick

Die Erforschung der Funktion neuronaler Netzwerke ist ungemein schwierig. Auch wenn man messen kann, wie Nervenzellen auf sensorische Information reagieren, ist es bislang nicht möglich, die Grundlagen dieser Aktivitätsmuster zu enthüllen.

Um dieses Problem in den Neurowissenschaften zu lösen, kombinierte die caesar-Forschungsgruppe „In Silico Brain Sciences“ Messungen im Tasthaarsystem von Ratten mit Computersimulationen. Dazu wurde die Aktivität aller Nervenzellen, die potentiell zu einem Ausgangssignal während sensorischer Wahrnehmung beitragen, gemessen. Anschließend wurde im Computer simuliert, wie die Pyramidenbahn-Neurone diese Informationen verarbeiten.

Die Ampel für den Neokortex

Diese Simulationen konnten nicht nur die Messungen im lebenden Tier reproduzieren, sondern machten Vorhersagen darüber, welche Nervenzellen im Gehirn die Ausgangsignale des Neokortex steuern. Hierbei machten die Forscher eine spannende Entdeckung. Sie identifizierten spezielle Nervenzellen, welche die Ausgangssignale der Pyramidenbahn-Neurone regeln. Diese Zellen wirken wie eine Verkehrsampel. Erst wenn sie aktiv werden, und „grünes Licht“ geben, leiten die Pyramidenbahn-Neurone Information aus dem Neokortex weiter.

„Das Bild einer Ampel passt recht gut“, sagt Dr. Oberlaender, Leiter der Studie. „Was wir gefunden haben zeigt, dass sensorische Informationen, die den Neokortex erreichen, zunächst hochspezielle Nervenzellen aktivieren. Ohne diese Zellen könnte keine Information den Neokortex verlassen. Diese Zellen schalten Pyramidenbahn-Neurone quasi auf grün.“

Die Entdeckung der „Ampel-Nervenzellen“ enthüllt ein grundlegendes Prinzip, wie sensorische Information in Verhalten umgewandelt wird. Darüber hinaus eröffnet die einzigartige Kombination von Experiment und Simulation neue Möglichkeiten zur Erforschung des Gehirns.

Die Ergebnisse der Studie werden am 26.11.2019 im renommierten Fachjournal „Neuron“ veröffentlicht. (s2)

Pressekontakt:
Sebastian Scherrer
Forschungszentrum caesar
Ludwig-Erhard-Allee 2
53175 Bonn
Tel.: 0228 - 9656 139
sebastian.scherrer@caesar.de

Über das Forschungszentrum caesar
caesar ist ein Forschungsinstitut für Neuroethologie. Hier untersuchen wir, wie aus der kollektiven Aktivität der Vielzahl miteinander vernetzter Neuronen im Gehirn tierisches Verhalten in seiner ganzen Bandbreite entsteht. Unsere Forschung ist interdisziplinär und findet auf verschiedensten Größenebenen statt.

Wissenschaftliche Ansprechpartner:

Dr. Marcel Oberlaender
Forschungszentrum caesar
Max-Planck-Gruppe In Silico Brain Sciences
Ludwig-Erhard-Allee 2
53175 Bonn
Tel.: 0228 - 9656 380
marcel.oberlaender@caesar.de

Originalpublikation:

Egger, Narayanan et al., Cortical Output Is Gated by Horizontally Projecting Neurons in the Deep Layers, Neuron (2019),
https://doi.org/10.1016/j.neuron.2019.10.011

Sebastian Scherrer | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Ampel Brain Sciences Gehirn Neokortex Nervenzellen Neuron Zellen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht „Kiss and Run“ zur Abfallverwertung in der Zelle
14.02.2020 | Universitätsmedizin Mannheim

nachricht Kurze Impulse mit großer Wirkung
14.02.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: Nanopartikel können Zellen verändern

Nanopartikel dringen leicht in Zellen ein. Wie sie sich dort verteilen und was sie bewirken, zeigen nun erstmals hochaufgelöste 3D-Mikroskopie-Aufnahmen an BESSY II. So reichern sich bestimmte Nanopartikel bevorzugt in bestimmten Organellen der Zelle an. Dadurch kann der Energieumsatz in der Zelle steigen. „Die Zelle sieht aus wie nach einem Marathonlauf, offensichtlich kostet es Energie, solche Nanopartikel aufzunehmen“, sagt Hauptautor James McNally.

Nanopartikel sind heute nicht nur in Kosmetikprodukten, sondern überall, in der Luft, im Wasser, im Boden und in der Nahrung. Weil sie so winzig sind, dringen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

„Kiss and Run“ zur Abfallverwertung in der Zelle

14.02.2020 | Biowissenschaften Chemie

Kurze Impulse mit großer Wirkung

14.02.2020 | Biowissenschaften Chemie

ESO-Teleskop sieht die Oberfläche des schwächelnden Beteigeuze

14.02.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics