Ein neuer Twist in der Femtochemie durch Attosekundenforschung

Abb. 1: Die XUV-Absorption aus einer kernnahen Schale in die Vakanzen in der Valenzschale ist elementspezifisch und abhängig von der lokalen chemischen Umgebung um das Reporteratom. Bild: MBI

Nichtsdestotrotz gibt es spannende Wege, auf denen die zeitaufgelöste Erforschung chemischer Reaktionen stark von den technologischen Entwicklungen in der Attosekundenphysik profitieren kann. Ein solcher Weg wurde in der kürzlich veröffentlichten Arbeit von Drescher et al. beschritten.

Attosekundenpulse werden durch Hohe Harmonische Erzeugung generiert, durch die Photonen aus dem infraroten Spektralbereich in einer stark nicht-linearen Wechselwirkung mit Materie in den Frequenzbereich des extremen Ultravioletts (XUV) konvertiert werden.

Die kurze zeitliche Dauer solcher Attosekundenpulse bedingt ein breites, kontinuierliches Frequenzspektrum, ideal geeignet für Absorptionsexperimente. Die erreichten Photonenenergien decken den Energiebereich bis zu hunderten von Elektronenvolt ab, mit denen Elektronen in den kernnahen Schalen von Atomen angeregt werden können.

Übergänge von gebundenen Elektronen aus kernnahen Schalen in die Valenzschale bieten einzigartige Einblicke in die Struktur und Dynamik von Molekülen. Aufgrund der starken Lokalisierung der Kernschalen sind diese Übergänge elementspezifisch. Gleichzeitig ist in ihnen aber auch die intramolekulare Umgebung des jeweiligen Atoms kodiert, da das Elektron in eine Vakanz in der Valenzschale gehoben wird, die von den chemischen Bindungen des Atoms im Molekül abhängt (siehe Abb. 1).

Wichtig ist nun, dass solche Kern-Valenzschalenübergänge nur sehr kurze Lebensdauern im Bereich weniger Femtosekunden haben. Die Anwendung ultrakurzer XUV-Pulse bietet daher neue Ansätze für zeitaufgelöste chemische Studien: Chemische Dynamik, etwa mit einem ultravioletten (UV) Laserpuls angestoßen, kann aus der Perspektive verschiedener Atome innerhalb eines Moleküls in einem transienten XUV-Absorptionsexperiment untersucht werden. Diese neue Art von chemischen Studien werden im Moment von einigen wenigen Arbeitsgruppen auf der Welt erprobt.

In dem von Drescher et al. am MBI ausgeführten Experiment wurde die Photodissoziation von Iodmethan (CH₃I) und Iodbenzol (C₆H₅I) mittels transienter XUV-Absorptionsspektroskopie untersucht (siehe Abb. 2). Diese beiden Moleküle unterscheiden sich durch den Bindungspartner des Iodatoms; in einem Falle ist dies eine Methylgruppe (CH₃), im anderen Falle eine Phenylgruppe mit dem charakteristischen Kohlenstoffring (C₆H₅). Absorption eines UV-Femtosekundenpulses führt zum Brechen der Bindung zwischen dem Iod- und dem benachbarten Kohlenstoffatom und damit zur Erzeugung von atomarem Iod. Untersucht wurde dies durch Absorption an der N₄,₅-Kante des Iodatoms.

In beiden Molekülen verschwinden die molekularen Kern-Valenzschalenübergänge bei UV-Absorption innerhalb der experimentellen Zeitauflösung. Die zum atomaren Iod hin konvergierenden Übergänge erscheinen unverzüglich im Falle von CH₃I, jedoch zeitverzögert im Falle von C₆H₅I. Im Falle von CH₃I wurde diese Beobachtung als die UV-Erzeugung einer Vakanz in der Valenzschale interpretiert, die in der Nähe des Iodatoms lokalisiert ist.

Damit ergibt sich eine hohe Wahrscheinlichkeit für einen XUV-Übergang aus dem Kernzustand des Iodatoms. Das Experiment zeigt, wie die Valenzschale während der Dissoziation des Moleküls relaxiert. Dabei wird eine kontinuierliche Verschiebung der Übergangsenergie der zum atomaren Iod hin konvergierenden Übergänge gemessen. In Falle von C₆H₃I hingegen weist das zeitverzögerte Erscheinen der Absorptionsübergänge auf eine UV-erzeugte Vakanz hin, die ursprünglich innerhalb des Moleküls räumlich entfernt vom Iod-Reporteratom lokalisiert ist.

Damit ist die Wahrscheinlichkeit für einen Kern-Valenzschalenübergang gering. Die Vakanz muss zuerst durch das Molekül wandern, bevor sie beobachtet werden kann. Dieses Verhalten ist der dominanten π → σ* UV-Anregung in Iodbenzol zuzuschreiben, eine Folge des charakteristischen delokalisierten Elektronensystems im Kohlenstoffring.

Während in der gerade veröffentlichten Arbeit die experimentellen Daten mittels eines einfachen Models erklärt wurden, ermöglicht das MBI mit seiner neu gegründeten Abteilung für Theorie einzigartige Möglichkeiten für gemeinsame experimentelle und theoretische Untersuchungen von transienter XUV-Absorptionsspektroskopie photochemischer Prozesse. Dabei wird auch eine neue theoretische Herangehensweise zum Einsatz kommen, die jüngst von Forscher und Forscherinnen des MBI in Kollaboration mit Kollegen und Kolleginnen in Kanada, dem Vereinten Königreich und der Schweiz entwickelt wurde.

Originalpublikation: Journal of Chemical Physics Communication, 145, 011101 (2016)
XUV transient absorption spectroscopy of iodomethane and iodobenzene photodissociation
L. Drescher, M.C.E. Galbraith, G. Reitsma, J. Dura, N. Zhavoronov, S. Patchkovskii, M.J.J. Vrakking, and J. Mikosch
http://dx.doi.org/10.1063/1.4955212

Abb. 1: Die XUV-Absorption aus einer kernnahen Schale in die Vakanzen in der Valenzschale ist elementspezifisch und abhängig von der lokalen chemischen Umgebung um das Reporteratom.

Abb. 2: (a) Transientes XUV-Aktionsabsorptionsspektrum der CH₃I Photodissoziation, d.h. die Differenz im XUV-Absorptionsspektrum vor und nach Photodissoziation. Absorptionslinien, die mit molekularem CH₃I assoziiert werden, verschwinden (ΔmA<0), während zum atomarem Iod hin konvergierende Linien erscheinen (ΔmA<0). (b), (c) Absorptionslinien, die zu atomarem Iod hin konvergieren, erscheinen unverzüglich in CH₃I, hingegen zeitverzögert in C₆H₅I, wie ein Vergleich mit der Apparatefunktion zeigt (rot).

Kontakt
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI)
Max-Born-Str. 2A
12489 Berlin

Dr. Jochen Mikosch
Tel. +49 (0) 30 6392 1240
mikosch@mbi-berlin.de

http://www.mbi-berlin.de

Media Contact

Karl-Heinz Karisch Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

KI-basierte Software in der Mammographie

Eine neue Software unterstützt Medizinerinnen und Mediziner, Brustkrebs im frühen Stadium zu entdecken. // Die KI-basierte Mammographie steht allen Patientinnen zur Verfügung und erhöht ihre Überlebenschance. Am Universitätsklinikum Carl Gustav…

Mit integriertem Licht zu den Computern der Zukunft

Während Computerchips Jahr für Jahr kleiner und schneller werden, bleibt bisher eine Herausforderung ungelöst: Das Zusammenbringen von Elektronik und Photonik auf einem einzigen Chip. Zwar gibt es Bauteile wie MikroLEDs…

Antibiotika: Gleicher Angriffspunkt – unterschiedliche Wirkung

Neue antimikrobielle Strategien sind dringend erforderlich, um Krankheitserreger einzudämmen. Das gilt insbesondere für Gram-negative Bakterien, die durch eine dicke zweite Membran vor dem Angriff von Antibiotika geschützt sind. Mikrobiologinnen und…

Partner & Förderer