Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Hirnbereich, zwei Planungsstrategien

26.02.2015

Speerfischer sehen beim Fischen wegen der Lichtbrechung ihr Ziel nie an der richtigen Stelle. Wie planen die Hirnzellen die nötige Bewegung des Arms? Spiegeln die Neuronen die Sicht-Position des Fischs wider, also das visuelle Ziel? Oder planen sie das physische Ziel, die tatsächliche Richtung der Armbewegung?

Die Frage nach diesen Aspekten der Bewegungsplanung haben Shenbing Kuang, Pierre Morel und Alexander Gail vom Deutschen Primatenzentrum bearbeitet. Ergebnis: Die meisten Neuronen sind für die Kodierung des physischen Zieles zuständig, also der tatsächlichen, gefühlten Bewegung des Arms. Einige Neuronen planen unabhängig aber auch das visuelle Ziel, also die gesehene Bewegung.


Dr. Pierre Morel richtet einen Versuchsaufbau mit Spiegeltechnik im Labor der Kognitiven Neurowissenschaften am DPZ ein. Auch für die Studie zur Bewegungsplanung wurde ein ähnlichen Aufbau verwendet.

Deutsches Primatenzentrum / Christian Kiel


Dr. Pierre Morel zeigt mit Hilfe einer Umkehrbrille, wie man dem Auge die entgegengesetzte Bewegung zeigt, als man sie eigentlich ausführt.

Deutsches Primatenzentrum / Christian Kiel

Still hält der Speerfischer den Speer im Anschlag über der Wasseroberfläche. Er fixiert sein Ziel, den Fisch. Doch der Anblick täuscht: Wegen der Lichtbrechung an der Oberfläche sieht er den Fisch nicht dort, wo er tatsächlich schwimmt. Wie plant das Gehirn die korrekte Armbewegung? Spiegeln die Hirnzellen (Neurone) vor allem die Position wider, in der der Fisch gesehen wird, also das visuelle Ziel? Oder planen sie das physische Ziel, die tatsächliche Richtung, in die sich Arm und Speer bewegen müssen, um den Fisch zu treffen?

Der Frage nach diesen unterschiedlichen Aspekten der Planung der Bewegung von Gliedmaßen sind Shenbing Kuang, Pierre Morel und Alexander Gail von der Forschungsgruppe Sensomotorik der Abteilung Kognitive Neurowissenschaften im Deutschen Primatenzentrum (DPZ) nachgegangen. Klar war, dass bestimmte Neuronen im Scheitellappen der Großhirnrinde für die Planung von Armbewegungen zuständig sind.

Nur war unbekannt, ob die Neuronen beide beschriebenen Aspekte der Bewegungsplanung übernehmen und ob eine der beiden Planungsfunktionen überwiegt, falls sie nachweisbar sind. Die Ergebnisse der Göttinger Forscher zeigen: Die meisten Neuronen sind für die Kodierung des physischen Zieles zuständig, also der tatsächlichen und damit der gefühlten Bewegung des Arms. Unabhängig davon planen einige Neuronen im selben Hirnareal aber auch das visuelle Ziel, also die gesehene Bewegung (Cerebral Cortex 2015).

Um ihre Frage zur Bewegungsplanung zu beantworten, haben die Forscher ein Experiment durchgeführt, in dem die physische Armbewegung und die visuelle Information über diese Bewegung voneinander getrennt werden konnten. Anders als für den Speerfischer stimmen diese Informationen im Alltag der meisten Menschen nämlich überein: Wer ein Glas auf dem Tisch greifen will, muss keine Lichtbrechung durchs Wasser einkalkulieren.

Um herauszufinden, ob Neuronen während der Planung einer Bewegung die zukünftige gesehene oder die gefühlte Bewegungsrichtung anzeigen, arbeiteten die Neurowissenschaftler mit zwei Rhesusaffen, die in Teilen des Experiments Spiegelbilder ihrer Handbewegung zu sehen bekamen. Bei diesen Tieren ähneln die Hirnregionen und -funktionen denen des Menschen sehr, daher sind die Forschungsergebnisse gut übertragbar.

Die Rhesusaffen waren darauf trainiert, Handbewegungen zu einem Lichtsignal auf einem Touchscreen auszuführen (etwa von der Mitte des Bildschirms nach links), während die Aktivität ihrer Neuronen im posterioren Parietalkortex aufgezeichnet wurde. Dabei verlief die Bewegung einmal unter normaler Sicht, während die Affen ein anderes Mal durch einen Spiegel genau die entgegengesetzte Handbewegung sahen, als sie sie ausführten: Griffen sie nach rechts, sahen sie einen Griff nach links.

Das Ergebnis: Die Aktivität der meisten Neurone unterschied sich in der Planungsphase der Bewegung nicht zwischen normaler und gespiegelter Handbewegung. Doch einige Neuronen im selben Hirnareal reagierten in der gespiegelten Situation genau gegensätzlich. Die Forscher schlossen daraus, dass diese Neuronen für die Planung des gesehenen Ziels der Handbewegung zuständig waren.

Denn dieses Ziel veränderte ja seine Position, wenn die Affen die Handbewegung seitenverkehrt sahen. Shenbing Kuang und seine Kollegen konnten damit zeigen, dass Neuronen für diese beiden verschiedenen Planungsziele im posterioren Parietalkortex koexistieren. Die Häufigkeitsverteilung dieser Neuronen legt dabei nahe, dass die Planung des physikalischen Ziels die dominante Komponente ist. Denn bei beiden Affen fanden sich etwa drei- bis viermal so viele Neuronen für das physische Ziel der Bewegung wie für das visuelle Ziel.

„Diese Ergebnisse geben Aufschluss darüber, wie das Gehirn gleichzeitig verschiedene Aspekte einer Bewegung plant“, erläutert Shenbing Kuang, „denn offenbar beziehen wir bei der Planung gleich die unterschiedlichen sensorischen Konsequenzen unserer Bewegung mit ein.“ Forschungsgruppenleiter Alexander Gail ergänzt: „Dem Wechselspiel von gesehenen und gefühlten Bewegungen wird eine zentrale Rolle beim Erlernen von Bewegungen beigemessen. Diese elementare Fähigkeit wollen wir besser verstehen, um lernfähige Neuroprothesen zu entwickeln.“

Originalpublikation

Kuang, S., Morel P. and Gail, A. (2015): Planning Movements in Visual and Physical Space in Monkey Posterior Parietal Cortex. Cerebral Cortex, Jan 9 (Epub ahead of print).
doi: 10.1093/cercor/bhu312

Kontakt und Hinweise für Redaktionen

Prof. Dr. Alexander Gail
Tel.: +49 551 3851-358
E-Mail: agail@gwdg.de

Christian Kiel (Kommunikation)
Tel: +49 551 3851-424
E-Mail: ckiel@dpz.eu

Die Deutsches Primatenzentrum GmbH (DPZ) - Leibniz-Institut für Primatenforschung betreibt biologische und biomedizinische Forschung über und mit Primaten auf den Gebieten der Infektionsforschung, der Neurowissenschaften und der Primatenbiologie. Das DPZ unterhält außerdem drei Freilandstationen in den Tropen und ist Referenz- und Servicezentrum für alle Belange der Primatenforschung. Das DPZ ist eine der 89 Forschungs- und Infrastruktureinrichtungen der Leibniz-Gemeinschaft.

Weitere Informationen:

http://www.dpz.eu

Christian Kiel | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics