Effiziente Umwandlung von Erdgas in Chemie-Grundstoffe

Kupfer-Oxo-Cluster in einem Zeolith mit Mordenit-Struktur (Cu: türkis; O: rot) Bild: Guanna Li und Evgeny Pidko / TU Eindhoven

In einer Zeit schwindender Mineralöl-Reserven rückt Erdgas als Ressource in den Fokus. Doch das Gas ist schwieriger zu transportieren und nicht leicht in die bestehende industrielle Infrastruktur zu integrieren.

Eine der Lösungen dafür sind ’Gas-to-Liquid’-Technologien. Diese wandeln Methan, den Hauptbestandteil von Erdgas, zu sogenanntem Synthesegas um. Aus diesem werden anschließend Methanol und Kohlenwasserstoffe hergestellt, die an chemischen Anlagen oder Kraftstoffunternehmen in der ganzen Welt ausgeliefert werden können.

Dieser Ansatz ist jedoch bisher nur in sehr großen Anlagen effizient durchführbar. Für die wirtschaftliche Verarbeitung von Methan aus kleineren Quellen an entfernten Standorten steht trotz vieler Forschungsanstrengungen derzeit keine 'Gas-to-Liquid’-Chemie zur Verfügung.

Von allen konzeptionell vielversprechenden Verfahren zur direkten Umwandlung von Methan in kleinerem Maßstab scheint die partielle Oxidation zu Methanol die praktikabelste zu sein. Aufgrund der niedrigeren Betriebstemperaturen ist das Verfahren sicher und energieeffizienter als andere.

Bio-inspirierter Katalysator

Ein Forscherteam um Professor Johannes Lercher (Technische Universität München und Pacific Northwest National Laboratory), Maricruz Sanchez-Sanchez (Technische Universität München), Professorin Moniek Tromp (Universität Amsterdam), Evgeny Pidko und Emiel Hensen (Technische Universität Eindhoven) konzentriert sich derzeit auf ein Verfahren zur partiellen Oxidation von Methan, das die enzymatische Umwandlung in einem Protein nachahmt.

Im Fokus des Teams steht ein modifizierter Zeolith. Nach einem in der Arbeitsgruppe von Johannes Lercher entwickelten Verfahren werden in diesem extrem porösen Material Kupferatome eingebaut. Diese kupferhaltigen Zeolithe mit Mordenitstruktur imitieren die Reaktivität des Enzyms Methan-Monooxygenase (MMO), das Methan effizient und selektiv zu Methanol oxidiert.

In ihrer aktuellen Veröffentlichung in Nature Communications geben die Forscher einen detaillierten molekularen Einblick in die Art und Weise, wie der Zeolith das aktive Zentrum des Enzyms imitiert.

Hoch selektiv

Durch die Kombination kinetischer Untersuchungen in München, moderner spektroskopischer Analysen in Amsterdam und theoretischer Modellierungen in Eindhoven konnten die Forscher zeigen, dass die Mikroporen des Zeoliths eine perfekte Umgebung für die hochselektive Stabilisierung des aktiven Kupferzentrums bieten. Sie identifizierten dreikernige Kupfer-Oxo-Cluster, die die Kohlenstoff-Wasserstoff-Bindungen in Methan lockern und damit dessen Umwandlung in Methanol fördern.

„Der entwickelte Zeolith ist eines der wenigen Beispiele eines Katalysators mit klar definierten aktiven Zentren, die gleichmäßig im Zeolith-Gerüst verteilt sind“, sagt Professor Johannes Lercher. „Dies ermöglicht eine wesentlich höhere Effizienz bei der Umwandlung von Methan in Methanol, als es bisher mit Zeolith-Katalysatoren möglich war.“

Darüber hinaus zeigt die Forschungsarbeit die eindeutige Verknüpfung der Struktur der aktiven Zentren mit ihrer katalytischen Aktivität. Dies macht den Zeolith zu einem „mehr als vielversprechenden“ Material, um das Ziel einer mit enzymatischen Systemen vergleichbaren katalytischen Aktivität und Selektivität zu erreichen.

Die Forschung wurde gefördert durch das US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences und das EU-NEXT-GTL Projekt (Innovative Catalytic Technologies & Materials for Next Gas to Liquid Processes). Die XAS-Messungen wurden mit der Unterstützung der Diamond Light Source (Oxfordshire, UK) durchgeführt. Die niederländische Organisation für wissenschaftliche Forschung (NWO) und SURFsara (NL) stellten Supercomputer-Rechenzeit zur Verfügung.

Publikation:

Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol
Sebastian Grundner, Monica A .C. Markovits, Guanna Li, Moniek Tromp, Evgeny A. Pidko,
Emiel J. M. Hensen, Andreas Jentys, Maricruz Sanchez-Sanchez, Johannes A. Lercher
Nature communications, 6, 7546 – DOI: 10.1038/ncomms8546
Link: http://www.nature.com/ncomms/2015/150625/ncomms8546/full/ncomms8546.html

Kontakt:

Prof. Dr. Johannes Lercher
Technische Universität München
Lehrstuhl für Technische Chemie II
Lichtenbergstr. 4, 85748 Garching, Germany
Tel.: +49 89 289 13540 – E-Mail: Johannes.Lercher@ch.tum.de
Internet: http://www.tc2.ch.tum.de

Media Contact

Dr. Ulrich Marsch Technische Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer