Die Dynamik epigenetischer Änderungen im Erbgut des Menschen

Als wäre die Speicherung der genetischen Information und ihrer Nutzungsanweisungen in der DNA der Zellen nicht kompliziert genug, werden zusätzliche Akzente für die Regulierung über die Anheftung chemischer Markierungen gesetzt.

So erscheinen zahlreiche Stellen der DNA wie mit einem Merkzettel versehen. Da diese Informationen sozusagen auf der genetischen Information draufsitzen, werden sie auch epigenetisch genannt. Die Markierungen sind so stabil, dass sie vererbt werden können.

Allerdings werden einige Zettel während verschiedener Entwicklungsprozesse oder bei der Entstehung von Krankheiten wie Krebs auch neu an-, ab- oder umgeheftet, die Markierungsmuster auf der DNA ändern sich. Der Tübinger Doktorand und Fellow am Harvard Department for Stem Cell and Regenerative Biology (HSCRB) Michael Ziller hat gemeinsam mit seinen Promotionsbetreuern, dem Harvard Professor Alexander Meissner (HSCRB) und dem Tübinger Professor Oliver Kohlbacher vom Wilhelm-Schickard-Institut für Informatik der Universität Tübingen einen Ansatz im großen Stil gewählt, um mehr über die Bedeutung dieser markierten Stellen bei der Genregulation zu erfahren:

In 30 verschiedenen Zell- und Gewebetypen des Menschen haben die Forscher die Muster jeweils im gesamten Erbgut, dem Genom, überprüft und analysiert. Über den Einsatz statistischer Methoden haben die Tübinger Wissenschaftler aus den immensen Datenmengen die Bereiche herausgefiltert, in denen sich die Markierungsmuster besonders dynamisch verhalten und so wichtige Anhaltspunkte für tiefergehende Untersuchungen im noch recht jungen Forschungsgebiet der Epigenetik gefunden. Ihre Studie erscheint aktuell in der Fachzeitschrift „Nature“.

Die epigenetische Markierung an der DNA besteht aus einer Methylgruppe, einem Kohlenstoffatom, an das drei Wasserstoffatome gebunden sind. Sie können immer dann angehängt werden, wenn in der Basenabfolge der DNA, in der die vier Basen Adenin, Cytosin, Guanin und Thymin vorkommen, Cytosin und Guanin aufeinander folgen, als sogenannte CpGs. Eine Methylierung verändert die chemischen Eigenschaften der DNA, sodass die Ablesung der Gene darüber fein reguliert werden kann. Bisher wurden häufig nur einzelne Abschnitte des Genoms im Laufe von Entwicklungsprozessen auf ihre Methylierung hin untersucht.

Bei ihrem breiten Untersuchungsansatz mit 42 Proben aus 30 verschiedenen Zell- und Gewebetypen des Menschen, in deren Genom flächendeckend die angehängten Methylgruppen kartiert wurden, produzierte das US-Team große Datenmengen: Sie erhielten mehr als 40 Milliarden Lesebereiche der DNA. Gemeinsam mit Oliver Kohlbacher aus Tübingen wurden dann neue mathematische Methoden entwickelt, um in diesem Datenwust die gesuchten CpGs zu identifizieren und ihre Methylierungsmuster festzuhalten.

Die Auswertung ergab mehr als 25 Millionen CpGs in dem Datenbestand. In den meisten Zelltypen sind 70 bis 80 Prozent der CpGs methyliert. Obwohl theoretisch an all diese DNA-Stellen Methylgruppen an- und abgehängt werden können, haben die Forscher festgestellt, dass in der Praxis nur ein kleiner Teil der CpGs den Status wechselt: Nur ein gutes Fünftel der CpGs, 21,8 Prozent, unterlag solchen Änderungen. Von den Genregionen, in denen die Methylierung sich dynamisch änderte, konnten die Wissenschaftler wiederum mehr als 60 Prozent räumlich einem genregulatorischen Element zuordnen. So haben sie die Stellen im menschlichen Genom identifiziert, deren nähere Untersuchung sich zum Beispiel im Hinblick auf die Entstehung von Krankheiten besonders lohnen könnte.

Die Einteilung der untersuchten Proben in verschiedene Zelltypen ergab eine weitere Regelmäßigkeit: Über undifferenzierte menschliche embryonale Stammzellen, die sich noch in alle Zelltypen entwickeln können, die direkten Abkömmlinge dieser Stammzellen, normale Körperzellen bis hin zu solchen Zellen, die durch eine Krebserkrankung verändert waren, nahm die Methylierung der DNA deutlich ab. Die „Merkzettel“ der Methylierung könnten also eine Art Verbotsschilder sein, die bei der Entfernung den Weg zur Ablesung bestimmter Gene frei geben und so der Zelle spezialisierte Eigenschaften verleihen, damit sie als Haut- oder Darmzellen, in der Niere oder den Muskeln bestimmte Aufgaben erfüllen können.

Originalpublikation:
Michael J. Ziller, Hongcang Gu, Fabian Müller, Julie Donaghey, Linus T.-Y. Tsai, Oliver Kohlbacher, Phil L. De Jager, Evan D. Rosen, David A. Bennett, Bradley E. Bernstein, Andreas Gnirke, Alexander Meissner: Charting a dynamic DNA methylation landscape of the human genome. Nature, Band 500, Nr. 7463, 22. August 2013, doi 10.1038/nature12433.
Kontakt:
Prof. Dr. Oliver Kohlbacher
Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät
Wilhelm-Schickard-Institut für Informatik – Angewandte Bioinformatik
Telefon +49 7071 29-70457
oliver.kohlbacher[at]uni-tuebingen.de
Weitere Informationen:
http://www.nature.com/nature/journal/v500/n7463/
– Die Studie auf dem Titelbild der Ausgabe von „Nature“

Media Contact

Myriam Hönig idw

Weitere Informationen:

http://www.uni-tuebingen.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern-befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer