Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Durchbruch in der Forschung: Erstmals leitfähige Tenside synthetisiert

24.11.2016

Der Arbeitsgruppe um den Konstanzer Chemiker Prof. Dr. Sebastian Polarz ist es gelungen, Tenside mit neuen Eigenschaften auszustatten.

Tenside sind interessante Moleküle, die jeder täglich anwendet – sie bilden etwa die Grundlage für Waschmittel oder Emulgatoren. Die bekannten Tenside, die eine wasserlösliche (hydrophile) und eine öllösliche (hydrophobe) Gruppe in einem Molekül vereinen, sind rein organische Verbindungen.

Zu ihren speziellen Eigenschaften gehört unter anderem die Fähigkeit, sich bei einer bestimmten Konzentration zu höher organisierten Strukturen zusammenzulagern. Eine dieser Strukturen ist die sogenannte Mizelle. Sie bildet sich dadurch, dass sich in wässriger Lösung die wasserlöslichen Gruppen nach außen, die hydrophoben nach innen orientieren. Bei Waschmitteln führt das dazu, dass Schmutz von der Kleidung abgewaschen wird und sich im Inneren der Mizellen einlagern kann – und mit dem Abwasser entsorgt wird.

Die Arbeitsgruppe um den Konstanzer Materialchemiker Prof. Dr. Sebastian Polarz forscht seit 2014 im Rahmen des European Research Council (ERC) Consolidator Grants ‚Inorganic surfactants with multifunctional heads (I-SURF)‘ daran, Tenside mit Eigenschaften auszustatten, die sie originär nicht aufweisen. Jetzt ist es erstmals gelungen, Tenside mit elektrischer Leitfähigkeit zu synthetisieren und diese Leitfähigkeit auch zu belegen.

Da Tenside oft eingesetzt werden, um Nanopartikel zu stabilisieren, ist dies eine überaus erwünschte Eigenschaft – unter anderem im Bereich der Entwicklung von Solarzellen. Die Originalveröffentlichung von Alexander Klaiber, Sebastian Polarz: „Passing Current through Electrically Conducting Lyotropic Liquid Crystals and Micelles Assembled from Hybrid Surfactants with π-Conjugated Tail and Polyoxometalate Head” wurde bei ASC Nano online veröffentlicht unter: DOI:10.1021/acsnano.6b04677

Gewöhnliche organische Moleküle können den elektrischen Strom nicht leiten, und auch die herkömmlichen Tenside bilden daher eine elektrisch isolierende Hülle. Um einen Elektronentransfer zu ermöglichen, wurden die sogenannten Kopfgruppen und Seitenketten der Tenside neu aufgebaut. Die bekannten Tenside haben als Kopfgruppen etwa Sulfonsäuren oder Ammoniumgruppen und als Seitenketten immer Alkylgruppen – die sich elektrisch isolierend verhalten.

Die Arbeitsgruppe um Sebastian Polarz hat nun die Kopfgruppen ersetzt durch sogenannte Polyoxometallate. Diese können mit Elektronen beladen werden, die sich dann in der Kopfgruppe bewegen können. Die Alkylgruppe der Seitenkette wurde ersetzt durch ein konjugiertes π-System, so dass beide Einzelkomponenten für sich gesehen bereits elektrisch leitfähig sind. Im neuen Tensid bildet das Polyoxometallat die wasserlösliche Kopfgruppe und die π-konjugierte Kette die öllösliche Seitenkette, und auch das Tensid als Ganzes ist elektrisch leitfähig – was nachgewiesen werden konnte.

Hinter der Forschung steht die Vision, mizellare Elektrokatalysatoren zu entwickeln. Das heißt, ins Innere einer Mizelle wird ein Katalysator eingebracht, der für seine Funktion auf Strom angewiesen ist und dadurch reguliert werden kann. „Mit unserem System könnte man das jetzt hinbekommen, und das ist auch der große Durchbruch, den wir erreicht haben“, erklärt Sebastian Polarz dazu.

Auch für den Bereich der Solarzellenforschung ist das Ergebnis interessant, da Solarzellen oft aus Nanopartikeln hergestellt werden, die mit Tensiden stabilisiert werden. Durch Backen bei hohen Temperaturen wird dann in der Regel versucht, die isolierende Hülle wieder loszuwerden. Dies ist ein Prozess, bei dem auch ungewünschte Nebeneffekte auftreten können. „Aus der Literatur geht ganz klar hervor, dass Tenside hervorragende Eigenschaften zeigen, die elektrisch isolierende Eigenschaft aber stört. Wir haben jetzt erstmalig elektrisch leitfähige Tenside herstellen können“, fasst Sebastian Polarz zusammen.

Originalveröffentlichung:
Alexander Klaiber, Sebastian Polarz: Passing Current through Electrically Conducting Lyotropic Liquid Crystals and Micelles Assembled from Hybrid Surfactants with π-Conjugated Tail and Polyoxometalate Head. Bei ASC Nano online veröffentlicht: DOI:10.1021/acsnano.6b04677

Faktenübersicht:
• Prof. Dr. Sebastian Polarz ist seit 2007 Professor für Anorganische Funktionsmaterialien an der Universität Konstanz. Der Bereich hat drei Forschungsschwerpunkte: Poröse Materialien, Nanopartikel und Tenside.
• Sebastian Polarz hat für die Erforschung neuer Tensidsysteme 2014 einen ERC Consolidator Grant eingeworben.
• 1,9 Millionen Euro stellt der European Research Council (ERC) bis 2019 für die Pionierarbeit zur Verfügung.

Kontakt:
Universität Konstanz
Kommunikation und Marketing
Telefon: 07531 88-3603
E-Mail: kum@uni-konstanz.de

Julia Wandt | Universität Konstanz
Weitere Informationen:
http://www.uni-konstanz.de

Weitere Berichte zu: ASC ERC European Research Council Moleküle Nano Polarz Tensid Tenside

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Operativer Herzklappenersatz: Maßgeschneiderte Aortenklappe aus eigenem Herzgewebe
13.07.2020 | Deutsche Herzstiftung e.V./Deutsche Stiftung für Herzforschung

nachricht Janggu macht Deep Learning zum Kinderspiel
13.07.2020 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg

10.07.2020 | Informationstechnologie

Binnenschifffahrt soll revolutioniert werden: Erst ferngesteuert, dann selbstfahrend

10.07.2020 | Verkehr Logistik

Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics