Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Druckventil in der Zellhülle identifiziert

11.04.2014

Für Körperzellen ist es lebenswichtig, ihr Volumen zu steuern. Das ist existenziell etwa beim Kontakt mit Flüssigkeiten verschiedener Salzkonzentration, bei der Zellteilung und beim Zellwachstum, aber auch bei Krankheiten wie Krebs, Schlaganfall und Herzinfarkt.

Ein wesentlich an der Volumenregulation beteiligtes Protein ist ein bestimmter Chloridkanal, der durch das Anschwellen der Zelle aktiviert wird und durch den dann Chloridionen und organische Stoffe („Osmolyte“) aus der Zelle ausgeschleust werden. Berliner Forschern um Prof. Thomas J. Jentsch ist es jetzt erstmals gelungen, die molekulare Identität dieses sogenannten Volumen-regulierten Anionen-Kanals (VRAC) aufzuklären.


Der Chloridkanal wird durch das Anschwellen der Zelle aktiviert. Bild: FMP/MDC

Die Wissenschaftler vom Leibniz-Institut für Molekulare Pharmakologie (FMP) und vom Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch identifizierten ein Molekül des Volumen-regulierten Anionen-Kanals namens LRRC8A. Dieses Molekül kann mit verwandten Proteinen (LRRC8B bis E) einen Kanal aus wahrscheinlich sechs Untereinheiten bilden.

Außerdem konnten sie erstmals zeigen, dass diese Chloridkanäle gleichzeitig für kleine organische Moleküle wie Taurin oder Aminosäuren durchlässig sind. Nach dem molekularen Aufbau des Volumen-regulierten Anionen-Kanals (VRAC = volume-regulated anion channel) hatten Forschergruppen weltweit seit über 20 Jahren gesucht. Jentschs Team benötigte knapp vier Jahre für den Durchbruch. Die Ergebnisse werden in der renommierten Zeitschrift Science, und wegen ihrer Bedeutung auch schon vorab als Science Express veröffentlicht.

Die Regulierung des Zellvolumens ist für viele Funktionen im Organismus bedeutsam. Der von Thomas Jentsch und seinen Mitarbeitern Felizia Voss und Tobias Stauber in seiner molekularen Struktur entschlüsselte Volumen-regulierte Anionenkanal (VRAC) ist bei allen Wirbeltieren in jeder Zelle vorhanden. Wenn ein bestimmtes Zellvolumen überschritten wird, dann öffnet sich der Kanal und lässt Osmolyte wie Chlorid- und organische Ionen wie Taurin und Aminosäuren austreten.

Kationen wie Kalium oder Natrium werden hingegen nicht durchgelassen. Der Vorgang verläuft passiv, der Kanal lässt durch seine elektrochemischen Eigenschaften nur Anionen und bestimmte organische Verbindungen passieren. Dadurch nimmt die Osmolarität, das heißt ihre osmotisch aktiven Bestandteile, in der Zelle ab, nähert sich der Umgebungsflüssigkeit an oder kann auch geringer werden. Gleichzeitig sinkt der Wassergehalt der Zelle, die Wassermoleküle wandern über sogenannte Aquaporine oder Wasserporen in der Zellmembran nach außen. Das Volumen der Zelle nimmt wieder ab.

Entdeckt wurde LRRC8A als VRAC Bestandteil mit Hilfe von small interfering RNA (siRNA). Mit diesen kurzen Ribonukleinsäure-Schnipseln kann man mit Hilfe der RNA-Interferenz die Umsetzung der genetischen Information in die entsprechenden Eiweiße herunterdrücken. In einem großen Versuchsansatz unterdrückte die Berliner Gruppe in Zellkultur jeweils einzeln die Produkte aller zirka 20 000 Gene des Menschen und untersuchte in einem automatisierten Verfahren, welche der Gene für den schwellungs-aktivierten Chloridstrom über die Zellmembran verantwortlich sind.

Mit der erst seit zwei Jahren zur Verfügung stehenden CRISPR/Cas-Technologie, mit der Gene auf den Chromosomen komplett und permanent ausgeschaltet werden können, sowie mit dem Wiederherstellen der genetischen Information, wurde die essenzielle Rolle von LRRC8-Proteinen im Volumen-regulierten Anionen-Kanal belegt. Verschiedene Kombinationen unterschiedlicher LRRC8 Proteine führten zu verschiedenen Eigenschaften des Kanals. „Dadurch können wir das bisher rätselhafte unterschiedliche Verhalten des Kanals in verschiedenen Geweben erklären“, erläutert Thomas Jentsch.

„Zellen können anschwellen und im schlimmsten Fall platzen. Deshalb müssen der Wassertransport und -gehalt genau kontrolliert werden.“ Der Wassertransport folge dabei immer dem osmotischen Gradienten. Die Zellen nehmen Chlorid aus der Umgebung auf, die organischen Stoffe wie Taurin oder Aminosäuren bilden die Zellen selbst. Die Entschlüsselung des molekularen Aufbaus dieses Chloridkanals ist auch deshalb bedeutsam, weil damit der Weg frei wird für bessere medizinische Behandlungen, beispielsweise nach einem Schlaganfall. „Bei Schädigungen im Gehirn schwellen Zellen an, setzten Glutamat frei, das auf Rezeptoren in Nervenzellen wirkt. Dadurch strömt Calcium ein, das in der dann auftretenden hohen Konzentration toxisch wirkt“, sagt Jentsch. Bei der chemotherapeutischen Behandlung von Krebstumoren hingegen komme es mit dem Einsetzen des programmierten Zelltods (Apoptose) zu einer starken Volumenverminderung. Auch daran soll der Volumen-regulierte Chloridkanal beteiligt sein.

Kontakt:
Prof. Thomas J. Jentsch
Leibniz-Institut für Molekulare Pharmakologie (FMP), Max-Delbrück-Centrum für Molekulare Medizin (MDC)
Robert-Roessle-Strasse 10
D-13125 Berlin
Tel.: +49-30-9406-2961 oder -2975
E-Mail: Jentsch@fmp-berlin.de
Internet: http://www.fmp-berlin.de/jentsch.html

Presse:
Silke Oßwald (FMP)
Tel.: +49-30-94793-104
E-Mail: osswald@fmp-berlin.de

Barbara Bachtler (MDC)
Tel.: +49-30-9406-3896
E-Mail: bachtler@mdc-berlin.de

Publikation
Felizia K. Voss, Florian Ullrich, Jonas Münch, Katina Lazarow, Darius Lutter, Nancy Mah, Miguel A. Andrade-Navarro, Jens P. von Kries, Tobias Stauber and Thomas J. Jentsch: Identification of LRRC8 Heteromers as Essential Component of the Volume-regulated Anion Channel VRAC.
Science Express, 10. April 2014; DOI: 10.1126/science.1252826

Beteiligte Gruppen:
Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin
Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin
Neurocure, Charité Universitätsmedizin, Berlin

Das Leibniz-Institut für Molekulare Pharmakologie (FMP) gehört zum Forschungsverbund Berlin e.V. (FVB), einem Zusammenschluss von acht natur-, lebens- und umweltwissenschaftlichen Instituten in Berlin. In ihnen arbeiten mehr als 1.500 Mitarbeiter. Die vielfach ausgezeichneten Einrichtungen sind Mitglieder der Leibniz-Gemeinschaft. Entstanden ist der Forschungsverbund 1992 in einer einzigartigen historischen Situation aus der ehemaligen Akademie der Wissenschaften der DDR.

Das Max-Delbrück-Centrum für molekulare Medizin (MDC) ist eine von 18 Forschungseinrichtungen der Helmholtz-Gemeinschaft . Es wurde 1992 gegründet, um molekulare Grundlagenforschung mit klinischer Forschung zu verbinden. Das MDC arbeitet eng mit der Charité – Universitätsmedizin im Berliner Institut für Gesundheitsforschung (BIG) zusammen und hat sich in den vergangenen Jahren zu einem international anerkannten Forschungsinstitut entwickelt.

Weitere Informationen:

http://www.fmp-berlin.de
http://www.mdc-berlin.de

Karl-Heinz Karisch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers
18.10.2019 | Universität zu Köln

nachricht Das Rezept für eine Fruchtfliege
18.10.2019 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers

18.10.2019 | Biowissenschaften Chemie

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019 | Physik Astronomie

Innovative Datenanalyse von Fraunhofer Austria

18.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics