Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Drei Nervenzellen reichen, um eine Fliege zu steuern

07.12.2018

Uns wirft so schnell nichts um. Eine Fruchtfliege kann dagegen schon ein kleiner Windstoß vom Kurs abbringen. Drei große Nervenzellen in jeder Hälfte des Fliegenhirns reichen jedoch aus, um die Fliege mit Hilfe visueller Signale wieder auf Kurs zu bringen.

Bewegen wir uns vorwärts, zieht die Umwelt in die entgegengesetzte Richtung an unseren Augen vorbei. Drehen wir uns, verschiebt sich das Bild der Umwelt im einen Auge von hinten nach vorn, im anderen Auge von vorn nach hinten.


HS-Zellen im Fliegenhirn reagieren auf großflächige, horizontale Bewegungen der Umwelt – und können mit diesen Informationen die Fliegenbeine auf der rechten oder der linken Körperseite bremsen

(c) MPI für Neurobiologie, Julia Kuhl

Diesen „optischen Fluss“ benutzen Wirbeltiere genauso wie Insekten, um ihre eigenen Bewegungen zu kontrollieren. Damit das funktionieren kann, müssen Nervenzellen existieren, die sich auf bestimmte Bewegungsrichtungen spezialisiert haben.

Im Gehirn von Fliegen reagieren drei große, sogenannte HS-Zellen in jeder Hirnhälfte auf großflächige, horizontale Bewegungen.

Handelt es sich dabei um eine Bewegung in die Lieblingsrichtung der Zellen, steigt ihr Membranpotential – sie depolarisieren, was in der Regel eine vermehrte Ausschüttung von Neurotransmittern auslöst. Auf eine Bewegung in die Gegenrichtung reagieren die Zellen mit sinkendem Membranpotential – sie hyperpolarisieren.

Alex Mauss und Christian Busch vom Max-Planck-Institut für Neurobiologie zeigen nun, dass tatsächlich beide Zellreaktionen das Laufverhalten der Fliegen beeinflussen.

Die beiden Wissenschaftler ließen Fruchtfliegen, umgeben von Monitoren, auf einem beweglichen Ball laufen. Aus der Bewegung des Balls konnten die Forscher leicht auf die beabsichtigte Bewegung der Fliege schließen: Ob sie geradeaus laufen oder sich drehen wollte. Auf den Monitoren bewegten sich währenddessen Streifenmuster horizontal – mal nur vor einem Auge, mal für beide, mal in dieselbe Richtung, mal entgegengesetzt.

Um die Aktivität der HS-Zellen zu manipulieren, hatten die Wissenschaftler diese mit lichtempfindlichen Ionen-Kanälen ausgestattet: eine Gruppe von Fliegen hatte Ionen-Kanäle in der Membran ihrer HS-Zellen, welche bei Belichtung die Zellen depolarisieren, eine andere Gruppe solche, die bei Belichtung die Zellen hyperpolarisieren.

Überraschenderweise konnten sowohl de- als auch hyperpolarisierende Aktivitätsänderungen eine Drehung einleiten. „Das ist das erste Mal, dass jemand einen Einfluss einer Hyperpolarisation auf eine Bewegung zeigen konnte“, so Mauss.

Durch diese doppelte Funktion der HS-Zellen können sie – je nach Bedarf – die Beine auf der einen oder anderen Körperseite abbremsen: Registriert eine HS-Zelle eine Bewegung in ihre bevorzugte Richtung, verlangsamt sich durch ihre Aktivität die Laufgeschwindigkeit der Beine auf der gleichen Körperseite.

Hyperpolarisiert die Zelle jedoch bei einer Bewegung in die Gegenrichtung, werden die Beine auf der gegenüberliegenden Körperhälfte langsamer. In beiden Fällen wird eine Drehbewegung eingeleitet, um einer ungewollten Kursänderung, zum Beispiel durch einen Windstoß, zu korrigieren.

Um sich jedoch gewollt zu drehen, schalten die Fliegen ihr HS-Zell-System vermutlich kurzzeitig ab. Auch beim Geradeauslaufen scheint es Gegenmaßnahmen zu geben, denn sonst würden die Tiere durch die HS-Zellen immer weiter abgebremst.

„Wir nehmen an, dass die Fliegen die HS-Zell-Signale beim Geradeauslaufen mit einer internen Erwartung verrechnen und dadurch ihre bremsende Wirkung neutralisieren“, erklärt Alex Mauss. „Das können wir vielleicht in einem der nächsten Versuche zeigen.“

KONTAKT
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie
Tel.: 089 8578 - 3514
Email: merker@neuro.mpg.de

Wissenschaftliche Ansprechpartner:

Prof. Dr. Alexander Borst
Max-Planck-Institut für Neurobiologie, Martinsried
Abteilung Schaltkreise – Information – Modelle
Tel.: 089 8578 - 3251
Email: borst@neuro.mpg.de

Originalpublikation:

Christian Busch, Alexander Borst, Alex S. Mauss
Bi-directional control of walking behavior by horizontal optic flow sensors
Current Biology, online am 6. Dezember 2018

Weitere Informationen:

http://www.neuro.mpg.de - Webseite des MPI für Neurobiologie
http://www.neuro.mpg.de/borst/de - Webseite der Abteilung von Alexander Borst

Dr. Stefanie Merker | Max-Planck-Institut für Neurobiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers
18.10.2019 | Universität zu Köln

nachricht Das Rezept für eine Fruchtfliege
18.10.2019 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers

18.10.2019 | Biowissenschaften Chemie

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019 | Physik Astronomie

Innovative Datenanalyse von Fraunhofer Austria

18.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics