Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

In doppelter Funktion

28.09.2012
Biologen der Universität Konstanz konnten die Regulation eines grundlegenden Zellzyklus klären

Der Biologe Prof. Dr. Thomas Mayer interessiert sich für die komplexe Regulation der Zellteilung. Für diese Untersuchungen verwendet er die Eier des Krallenfrosch Xenopus laevis.

Bereits während seiner Forschungstätigkeit am Max-Planck-Institut für Biochemie in München gelang es Thomas Mayer, mit der Entdeckung des Proteins XErp1 ein seit langer Zeit bestehendes Rätsel zur Regulation der Zellteilung in Eizellen zu lösen. Nun hat er in seiner Arbeitsgruppe für Molekulare Genetik an der Universität Konstanz einen weiteren Beleg für die essenzielle Funktion des XErp1-Proteins gefunden:

Es reguliert die embryonalen Zellteilungszyklen zwei bis zwölf, die sehr schnell und synchron ablaufen. Eine grundlegende Funktion angesichts der Tatsache, dass die Überlebensfähigkeit jedes Organismus davon abhängt, dass in jeder Phase der Teilung das Genom exakt und fehlerlos auf die Tochterzellen aufgeteilt wird. Die Ergebnisse sind in der aktuellen Ausgabe des Wissenschaftsjournals „Science“ nachzulesen.

Am Anfang der Entwicklung eines jeden Säugetiers steht die Zygote, die befruchtete Eizelle. Nachdem die weibliche und männliche DNA in der Zygote miteinander verschmolzen sind, durchlaufen die Embryonen zahlreiche Zellteilungsrunden, in denen die DNA zuerst exakt kopiert wird, um sie anschließend auf die neu entstehenden Tochterzellen aufzuteilen. Vorausgesetzt, dass all diese komplexen Vorgänge fehlerfrei ablaufen, entwickelt sich aus der Zygote ein intakter Organismus.

Die reifen Xenopus-Eier - riesige Zellen mit einem Durchmesser von ungefähr einem Millimeter - haben mit denen des Menschen gemeinsam, dass ihre Teilung den zweiten Schritt der Meiose nicht ganz durchläuft, sondern kurz zuvor angehalten wird. In diesem Zustand warten sie darauf, befruchtet zu werden. In seinen früheren Untersuchungen konnte Thomas Mayer bereits nachweisen, dass das Protein XErp1 für die Arretierung der Zellteilung in reifen Xenopus-Eiern verantwortlich ist. Wird die Eizelle schließlich befruchtet, verschwindet das XErp1-Protein sehr schnell – um nach dem ersten, längeren Zellzyklus, in dem die weibliche und männliche DNA verschmelzen, wieder aufzutauchen. Weshalb es sich in den Teilungsphasen zwei bis zwölf wieder bildet, war bislang nicht bekannt. Frühere Veröffentlichungen gingen davon aus, dass XErp1 bei diesen Zellteilungen keine Rolle spielt. Eine Hypothese, die in der Konstanzer Arbeitsgruppe von Thomas Mayer stark angezweifelt wurde.

Was passiert, wenn das Protein XErp1 bei diesen elf schnellen Zellteilungen nicht mehr anwesend ist? Diese Frage bildete den Ausgangspunkt der Forschung in der Arbeitsgruppe für Molekulare Genetik. „Dazu haben wir Xenopus-Embryonen kurze RNA-Stücke injiziert, die verhindern, dass das XErp1-Protein wieder akkumulieren kann. Dann haben wir uns angeschaut, ob sich die Xenopus-Embryonen in dessen Abwesenheit normal entwickeln“, beschreibt Thomas Mayer das experimentelle Vorgehen. Auf diese Weise konnte gezeigt werden, dass XErp1 essenziell ist für die Entwicklung der Xenopus-Embryonen. Ist es in dieser Phase der Zellteilung nicht vorhanden, begehen die Embryonen Apoptose - sie sterben den aktiven Zelltod. „Es geht hier darum, innerhalb einer sehr kurzen Zeit einen intakten Embryo herzustellen. Wenn es schiefgeht, folgt die Apoptose“, erklärt der Biologe den Sinn dieses Vorgangs. Die Antwort war somit klar: Das Protein XErp1 taucht nach der ersten langsameren Zellteilung wieder auf, um die elf darauffolgenden schnellen Zellteilungen zu regulieren.

Es sorgt dafür, dass die Aufteilung der DNA während der frühen embryonalen Zellteilungen korrekt abläuft. Zu diesem Zweck inhibiert XErp1 den „Anaphase promoting complex“ (APC), eine Ubiquitin-Ligase, deren Aktivität für den bei der Zellteilung wichtigen Übergang zwischen Metaphase und Anaphase notwendig ist. In der Metaphase werden Schwesterchromatide durch einen aus Proteinen gebildeten Ring zusammengehalten. Bei Eintritt in die Anaphase wird dieser Ring durch das Enzym Separase aufgeschnitten und somit die Trennung der Schwesterchromatiden eingeleitet. In der Zelle muss sichergestellt sein, dass dieser Ring nicht zu früh, das heißt, bereits in der Metaphase, aufgeschnitten wird. Dafür ist das Protein Securin verantwortlich, welches die Separase in der Metaphase inaktiv hält und bei Eintritt in die Anaphase durch den APC abgebaut wird.

Was hat dies mit der Funktion von XErp1 zu tun? XErp1 sorgt dafür, dass der APC in der Metaphase inaktiv ist, und verhindert somit, dass Securin zu früh abgebaut wird. In Abwesenheit von XErp1 kommt es zu unkontrollierter APC-Aktivität und somit zu fehlerhafter Chromatiden-Trennung, was letztendlich zum Absterben der Embryonen führt. Nach Beendigung der elf schnellen Zellzyklen verschwindet das Protein XErp1 wieder und seine Funktion wird von anderen Proteinen übernommen.

Die Untersuchungen der Arbeitsgruppe Mayer, die durch den Sonderforschungsbereich 969 "Chemical and Biological Principles of Cellular Proteostasis" der Universität Konstanz gefördert wurden, haben somit mit XErp1 einen APC-Inhibitor in doppelter Funktion identifiziert, der sowohl für meiotische als auch embryonale Zellteilung von zentraler Bedeutung ist.

Tischer R, Hörmanseder E, and Mayer TU (2012) The APC/C-Inhibitor XErp1/Emi2 is Essential for Xenopus Early Embryonic Divisions. Science, Published Online September 27 201, Science DOI: 10.1126/science.1228394

Hinweis an die Redaktionen:
Ein Foto von Prof. Dr. Thomas U. Mayer kann im Folgenden heruntergeladen werden: http://www.pi.uni-konstanz.de/2012/134-mayer.jpg

Kontakt:
Universität Konstanz
Kommunikation und Marketing
Telefon: 07531 / 88-3603
E-Mail: kum@uni-konstanz.de

Prof. Dr. Thomas U. Mayer
Universität Konstanz
Fachbereich Biologie
78457 Konstanz
Telefon: 07531 / 88-3707
Fax: 07531 / 88-4036
E-Mail: Thomas.U.Mayer@uni-konstanz.de

Julia Wandt | idw
Weitere Informationen:
http://www.uni-konstanz.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Integrierte Zuckermoleküle schonen Zellkulturen
17.05.2019 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Erstmals Einsatz von gefäßschützendem Antikörper bei kardiogenem Schock
17.05.2019 | Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quanten-Cloud-Computing mit Selbstcheck

Mit einem Quanten-Coprozessor in der Cloud stoßen Innsbrucker Physiker die Tür zur Simulation von bisher kaum lösbaren Fragestellungen in der Chemie, Materialforschung oder Hochenergiephysik weit auf. Die Forschungsgruppen um Rainer Blatt und Peter Zoller berichten in der Fachzeitschrift Nature, wie sie Phänomene der Teilchenphysik auf 20 Quantenbits simuliert haben und wie der Quantensimulator das Ergebnis erstmals selbständig überprüft hat.

Aktuell beschäftigen sich viele Wissenschaftler mit der Frage, wie die „Quantenüberlegenheit“ auf heute schon verfügbarer Hardware genutzt werden kann.

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

MS Wissenschaft startet Deutschlandtour mit Fraunhofer-KI an Bord

17.05.2019 | Veranstaltungen

Wie sicher ist autonomes Fahren?

16.05.2019 | Veranstaltungen

Chemie – das gemeinsame Element

16.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Integrierte Zuckermoleküle schonen Zellkulturen

17.05.2019 | Biowissenschaften Chemie

Erstmals Einsatz von gefäßschützendem Antikörper bei kardiogenem Schock

17.05.2019 | Biowissenschaften Chemie

Additive Maschinen lernen Superlegierungen kennen

17.05.2019 | Maschinenbau

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics