Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Doch keine Wassermoleküle im Selektivitätsfilter von Kaliumkanälen

09.08.2019

Passieren Kaliumionen alleine den Selektivitätsfilter eines Kaliumkanals oder sitzen Wassermoleküle zwischen den Ionen? Diese Frage ist seit Jahren umstritten. Forscher um Prof. Adam Lange vom Berliner Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) haben nun zeigen können, dass keine Wassermoleküle durch den Kaliumkanal wandern. Da die Versuche erstmals an Zellmembranen unter natürlichen Bedingungen durchgeführt wurden, haben die Forscher einen starken Beweis in der Hand. Ihre Arbeit ist soeben im Fachjournal „Science Advances“ erschienen.

Unsere Zellen brauchen Kaliumionen, zum Beispiel um Nervenimpulse weiterzuleiten oder die Herzfrequenz zu steuern. Darum ist fast jede menschliche Zelle - oder genauer gesagt die Membran einer Zelle - mit Kaliumkanälen ausgestattet.


Kaliumtransport durch den Selektivitätsfilter eines Kaliumselektiven Ionenkanals. Der Kanal - in orange dargestellt - ist nur durchlässig für Kaliumionen (große grüne Kugeln). Wassermoleküle (kleine blaue Kugeln) und andere Ionen wie z.B. Natrium (nicht gezeigt) können den Kanal hingegen nicht passieren.

Barth van Rossum

Weil Kaliumkanäle eine fundamentale Bedeutung für biologische Prozesse haben und schon kleinste Veränderungen zu schweren Krankheiten führen können, werden die winzigen Eiweißmoleküle weltweit erforscht. Für die Aufklärung der Struktur von Kaliumkanälen hat ein US-Forscher im Jahr 2003 sogar den Nobelpreis für Chemie erhalten.

Kontroverse Debatte um zwei verschiedene Mechanismen

Unklar war jedoch, wie genau Kalium den Kanal passiert, um über die Zellmembran zu gelangen. Lange Zeit ging man davon aus, dass auf jedes Kaliumion ein Wassermolekül folgt und die Elemente dann aufgereiht wie an einer Kette nacheinander den engsten Teil des Kaliumkanals, den sogenannten Selektivitätsfilter, passieren.

Erklärt wurde das damit, dass Kaliumionen positiv geladen sind und sich ohne die Zwischenmoleküle gegenseitig abstoßen würden. Dieser Mechanismus wurde 2014 von Göttinger Forschern um Prof. Bert de Groot jedoch in Frage gestellt: Computersimulationen zeigten, dass im Selektivitätsfilter von Kaliumkanälen gar keine Wassermoleküle vorhanden sind. Doch klar war die Sache damit noch nicht. Denn anschließend wurden weitere Arbeiten publiziert, die den älteren Mechanismus stützten und den neuen anscheinend widerlegten.

Nun haben Forscher vom Berliner Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Klarheit in die kontroverse Debatte gebracht: Dr. Carl Öster und Kitty Hendriks aus der Arbeitsgruppe von Prof. Adam Lange konnten zusammen mit weiteren Kollegen am FMP erstmals mittels Festkörper-Kernspinresonanz (NMR)-Spektroskopie zeigen, dass Kaliumionen tatsächlich ohne Wassermoleküle durch die Kaliumkanäle wandern. Die Kaliumionen sitzen demnach direkt hintereinander und schieben sich gegenseitig von unten nach oben durch den Kaliumkanal.

Unter natürlichen Bedingungen ist der Selektivitätsfilter von Kaliumkanälen frei von Wasser

„Die Technik, die wir verwendet haben, erlaubt es, Membranproteine in echten Zellmembranen unter natürlichen Bedingungen anzuschauen, also etwa bei Raumtemperatur oder physiologischen Salzkonzentrationen“, erklärt Kitty Hendriks.

„Damit konnten wir zeigen, dass unter diesen Bedingungen definitiv kein Wasser zwischen den Kaliumionen im Selektivitätsfilter zu finden ist.“
Die ersten Hinweise darauf kamen aus Computersimulationen und es gibt auch röntgenkristallografische Daten, die für die Abwesenheit von Wassermolekülen im Selektivitätsfilter von Kaliumkanälen sprechen.

„Diese Untersuchungen wurden allerdings unter künstlichen Bedingungen durchgeführt“, betont Dr. Carl Öster. „Mit unseren ergänzenden Daten aus der NMR-Spektroskopie haben wir jetzt ein schwergewichtiges Argument in der Hand, dass der neuere Mechanismus der richtige ist.“
Den Nachweis, dass keine Wassermoleküle zwischen den Kaliumionen sitzen, haben die FMP-Forscher zusammen mit Kollegen vom Max Planck Institut für Biophysikalische Chemie um Prof. Bert de Groot erbracht, deren computergestützte Molekulardynamiksimulationen ebenfalls mit in die Arbeit eingeflossen sind.

Ein Fortschritt für die Forschung

Entscheidend für die Aufklärung des Mechanismus war, dass das FMP ein weltweit führendes Zentrum für NMR-spektroskopische Untersuchungen ist und diese komplexe Technik ständig weiterentwickelt. „Vor fünf Jahren hätten wir das sicher so noch nicht zeigen können, aber jetzt sind wir so weit, dass wir diese wichtige Fragestellung gut beantworten können“, sagt Arbeitsgruppenleiter Prof. Adam Lange, dessen Schwerpunkt auf der Erforschung von Membranproteinen wie Ionenkanälen liegt.

Er fügt hinzu: „Da die Abläufe in den Kaliumkanälen elementar für unsere Gesundheit sind, haben unsere Ergebnisse eine große Bedeutung, auch über die Grundlagenforschung hinaus.“

Finanziell unterstützt wurde die Arbeit durch das European Research Council im Rahmen eines ERC Grants an Prof. Lange und durch die Deutsche Forschungsgemeinschaft (DFG; Forschergruppe 2518).

Bildunterschrift: Kaliumtransport durch den Selektivitätsfilter eines Kaliumselektiven Ionenkanals. Der Kanal - in orange dargestellt - ist nur durchlässig für Kaliumionen (große grüne Kugeln). Wassermoleküle (kleine blaue Kugeln) und andere Ionen wie z.B. Natrium (nicht gezeigt) können den Kanal hingegen nicht passieren.

Wissenschaftliche Ansprechpartner:

Prof. Adam Lange
Abteilung Molekulare Biophysik (FMP)
alange@fmp-berlin.de
Tel: 0049 30 94793-190

www.leibniz-fmp.de/lange 

Originalpublikation:

Carl Öster*, Kitty Hendriks*, Wojciech Kopec, Veniamin Chevelkov, Chaowei Shi, Dagmar Michl, Sascha Lange, Han Sun, Bert L. de Groot, Adam Lange. The conduction pathway of potassium channels is water free under physiological conditions, Science Advances 31. Juli 2019, DOI: 10.1126/sciadv.aaw6756

Weitere Informationen:

https://www.leibniz-fmp.de/de/press-media/filmportraits-2017/filmportraits-2017-...

Silke Oßwald | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Antibiotika aus dem Meer
18.11.2019 | Friedrich-Schiller-Universität Jena

nachricht Auch parasitische Wespen machen Fettsäuren selbst
18.11.2019 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neu entwickeltes Glas ist biegsam

Eine internationale Forschungsgruppe mit Beteiligung der Österreichischen Akademie der Wissenschaften hat ein Glasmaterial entwickelt, das sich bei Raumtemperatur bruchfrei verformen lässt. Das berichtet das Team aktuell in "Science". Das extrem harte und zugleich leichte Material verspricht ein großes Anwendungspotential – von Smartphone-Displays bis hin zum Maschinenbau.

Gläser sind ein wesentlicher Bestandteil der modernen Welt. Dabei handelt es sich im Alltag meist um sauerstoffhaltige Gläser, wie sie etwa für Fenster und...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: Veränderungen der Chiralität von Molekülen in Echtzeit beobachten

Chirale Moleküle – Verbindungen, die als Bild und Spiegelbild vorkommen – spielen eine wichtige Rolle in biologischen Prozessen und in der chemischen Synthese. Chemikern der ETH Zürich ist es nun erstmals gelungen, mit Hilfe von Ultrakurzzeit-Laserpulsen Änderungen der Chiralität während einer chemischen Reaktion in Echtzeit zu beobachten.

Manche Moleküle können in zwei spiegelbildlichen Formen existieren, ähnlich wie unsere Hände. Obwohl solche sogenannten Enantiomere fast identische...

Im Focus: Durchbruch in der Malariaforschung

Eine internationale Forschungsgruppe um den Zellbiologen Volker Heussler von der Universität Bern hat hunderte genetische Schwachstellen des Malaria-Parasiten Plasmodium identifiziert. Diese sind in der Medikamenten- und Impfstoffentwicklung dringend erforderlich, um die Krankheit dereinst ausrotten zu können.

Trotz grosser Anstrengungen in Medizin und Wissenschaft, sterben weltweit immer noch mehr als 400'000 Menschen an Malaria. Die Infektionskrankheit wird durch...

Im Focus: Bauplan eines bakteriellen Kraftwerks entschlüsselt

Wissenschaftler der Universität Würzburg und der Universität Freiburg gelang es die komplexe molekulare Struktur des bakteriellen Enzyms Cytochrom-bd-Oxidase zu entschlüsseln. Da Menschen diesen Typ der Oxidase nicht besitzen, könnte dieses Enzym ein interessantes Ziel für neuartige Antibiotika sein.

Sowohl Menschen als auch viele andere Lebewesen brauchen Sauerstoff zum Überleben. Bei der Umsetzung von Nährstoffen in Energie wird der Sauerstoff zu Wasser...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Antibiotika aus dem Meer

18.11.2019 | Biowissenschaften Chemie

Lebende Brücken: Mit alten indischen Bautechniken moderne Städte klimafreundlich gestalten

18.11.2019 | Architektur Bauwesen

„Moonwalk“ für die Wissenschaft zeigt Verzerrungen im räumlichen Gedächtnis

18.11.2019 | Studien Analysen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics