Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

DNA: nicht nur gut als Erbgut

15.01.2016

Das „Kerngeschäft“ der DNA ist zweifelsohne, unsere genetische Information zu codieren und zu speichern. Doch sie kann noch mehr: Ebenso wie viele Proteine und RNAs kann auch DNA wie ein Enzym chemische Reaktionen katalysieren.

Göttinger Forscher um Claudia Höbartner und Vlad Pena haben nun erstmals die räumliche Struktur eines DNA-Enzyms im atomaren Detail sichtbar gemacht. Sie erbringen damit den Beweis, dass sich auch DNA zu komplexen dreidimensionalen Formen faltet, um katalytisch aktiv zu sein.


Die erste dreidimensionale Struktur eines DNA-Enzyms. Das Desoxyribozym (blau) hat zwei RNA-Stränge (orange) miteinander verknüpft.

Höbartner und Pena / Max-Planck-Institut für biophysikalische Chemie

Die neuen Erkenntnisse lösen ein langjähriges Rätsel der Nukleinsäure-Chemie und sind ein wichtiger Schritt, um DNA-Enzyme besser zu verstehen und als Werkzeuge nutzbar zu machen.

Anders als katalytische Proteine und RNAs hat man DNA-Enzyme, auch Desoxyribozyme genannt, bisher in lebenden Zellen nicht gefunden. Wissenschaftler stellen diese künstlich her, indem sie eine Vielzahl einzelner DNA-Stränge produzieren und anschließend jene herausfiltern, die enzymatisch aktiv sind, also chemische Reaktionen katalysieren.

Die Desoxyribozyme können dann als Werkzeuge in der Forschung dienen. Sie werden beispielsweise dafür eingesetzt, RNA-Moleküle an einer definierten Stelle zu schneiden oder zwei RNAs miteinander zu verknüpfen. Außerdem hofft man, sie auch in der Medizin nutzen zu können, um etwa an Krankheiten beteiligte Gene gezielt auszuschalten.

„Um wirksame Desoxyribozyme für einen bestimmten Zweck zu optimieren, müssen wir zunächst mehr darüber lernen, wie sie im Detail funktionieren“, erläutert Claudia Höbartner, Leiterin der Gruppe Nukleinsäurechemie am Göttinger Max-Planck-Institut für biophysikalische Chemie und Professorin am Institut für Organische und Biomolekulare Chemie an der Universität Göttingen.

„Dafür ist es nötig zu verstehen, welche dreidimensionale Struktur der DNA-Strang einnimmt und wie es der DNA gelingt, unter den vielen möglichen Stellen in der RNA genau eine einzige für die Reaktion auszuwählen.“

Eine solche Desoxyribozym-Struktur zu ermitteln versuchen Forscher, seit DNA-Enzyme vor mehr als 20 Jahren entdeckt wurden. Dem Team um Claudia Höbartner und Vlad Pena ist jetzt der Durchbruch gelungen: Sie haben die räumliche Struktur eines Desoxyribozyms mit atomarer Genauigkeit analysiert und damit detaillierte Einblicke in dessen Funktionsweise gewonnen – ein Meilenstein in der Forschung an Nukleinsäure-Enzymen.

Desoxyribozyme falten sich wie Proteine und RNA-Enzyme

Das untersuchte DNA Enzym katalysiert das Ausbilden einer natürlichen chemischen Bindung zwischen zwei RNA-Molekülen, die dadurch zu einem einzigen RNA-Strang verschmelzen. Die Struktur der Göttinger Chemiker zeigt das Desoxyribozym am Ende dieser Reaktion.

„Wie wir sehen konnten, hat sich der DNA-Strang zu einer kompakten Einheit zusammengefaltet. Dadurch kommen bestimmte Bauteile der DNA an einem Punkt mit den Enden der RNA-Stränge zusammen und bilden ein Zentrum, in dem die chemische Reaktion abläuft“, erklärt Vlad Pena, der am MPI für biophysikalische Chemie die Forschungsgruppe Makromolekulare Kristallografie leitet.

Mit der ersten dreidimensionalen Struktur eines Desoxyribozyms zeigen die Göttinger Wissenschaftler jetzt, was lange vermutet, bisher aber nicht belegt werden konnte: DNA-Enzyme nehmen, ebenso wie enzymatische RNAs und Proteine, eine definierte dreidimensionale Struktur ein, um ihre katalytische Aufgabe zu erfüllen. „Daraus ergibt sich die spannende Frage, ob komplexere DNA-Strukturen nicht auch in der Natur eine Rolle spielen könnten, ähnlich wie wir es bisher nur von RNAs und Proteinen kennen“, so Pena.

Die gewonnenen Erkenntnisse der Forscher sind auch hilfreich, um den genauen Ablauf der Reaktion zu verstehen und DNA-Enzyme als Werkzeuge zu verbessern: Dank der neuen Informationen konnten sie das DNA-Enzym so modifizieren, dass es seine „Vorliebe“ für bestimmte RNAs änderte.

Des Weiteren lösten die Chemiker mit der ersten Struktur eines Desoxyribozyms ein Rätsel, das Wissenschaftler beschäftigt hat, seit man von katalytisch aktiven DNA-Molekülen weiß: Die verwandten RNA-Enzyme sind besonders gute Katalysatoren, weil sie an jedem einzelnen DNA-Baustein eine zusätzliche sogenannte Hydroxylgruppe besitzen, die für die Struktur der RNA-Enzyme und für die Katalyse der Reaktionen eine wichtige Rolle spielt. Diese zusätzliche Hydroxylgruppe fehlt der DNA.

Wie also schaffen es Desoxyribozyme, Reaktionen ähnlich gut zu katalysieren wie die chemisch doch viel besser ausgestatteten RNA-Enzyme? „Die Struktur des Desoxyribozyms zeigt, dass die fehlende Hydroxylgruppe für die DNA kein Nachteil ist“, berichtet Almudena Ponce-Salvatierra, Erstautorin der Arbeit. „Ihre Abwesenheit macht den DNA-Strang nämlich viel flexibler. Er kann sich daher zu ganz anderen Formen zusammenfalten, als es einem RNA-Strang möglich wäre. Dadurch hat ein Desoxyribozym noch mehr Möglichkeiten, seine chemischen Bausteine so zusammenzubringen, dass sie Reaktionen katalysieren können.“

In Zukunft will Max-Planck-Forscherin Höbartner noch mehr über diese besonderen Nukleinsäure-Moleküle herausfinden: „Wir werden versuchen, ein Desoxyribozym nicht nur nach, sondern vor oder während der chemischen Reaktion ‚einzufrieren‘ und seine Struktur zu analysieren. Diese würde uns noch mehr Details über den Mechanismus verraten, mit dem das Enzym seine Reaktion katalysiert.“ (fk)

Original-Veröffentlichung:
Almudena Ponce-Salvatierra, Katarzyna Wawrzyniak-Turek, Ulrich Steuerwald, Claudia Höbartner, Vladimir Pena: Crystal structure of a DNA catalyst. Nature 529, 231-234 (2016).

Kontakt:
Prof. Dr. Claudia Höbartner, Gastgruppe Nukleinsäurechemie
Max-Planck-Institut für biophysikalische Chemie, Göttingen, und
Institut für Organische und Biomolekulare Chemie, Universität Göttingen
Tel.: +49 551 201-1685, +49 551 39-20906
E-Mail: claudia.hoebartner@mpibpc.mpg.de

Dr. Vlad Pena, Forschungsgruppe Makromolekulare Kristallografie
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201-1197
E-Mail: vpena@gwdg.de

Dr. Frederik Köpper, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201-1310
E-Mail: frederik.koepper@mpibpc.mpg.de

Weitere Informationen:

http://www.mpibpc.mpg.de/15196506/pr_1601 – Originalpressemitteilung des Max-Planck-Instituts für biophysikalische Chemie, Göttingen
http://www.mpibpc.mpg.de/de/hoebartner – Webseite der Gastgruppe Nukleinsäurechemie am
http://Max-Planck-Institut für biophysikalische Chemie
http://www.mpibpc.mpg.de/de/pena – Webseite der Forschungsgruppe Makromolekulare Kristallografie am Max-Planck-Institut für biophysikalische Chemie

Dr. Carmen Rotte | Max-Planck-Institut für biophysikalische Chemie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Erste SARS-CoV-2-Genome aus Österreich veröffentlicht
03.04.2020 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Die Mimik der Mäuse
03.04.2020 | Max-Planck-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: Quantenimaging: Unsichtbares sichtbar machen

Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern. Ein Forscherteam am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena hat eine Quantenimaging-Lösung entwickelt, die in extremen Spektralbereichen und mit weniger Licht genaueste Einblicke in Gewebeproben ermöglichen kann.

Optische Analyseverfahren wie Mikroskopie und Spektroskopie sind in sichtbaren Wellenlängenbereichen schon äußerst effizient. Doch im Infrarot- oder...

Im Focus: Sensationsfund: Spuren eines Regenwaldes in der Westantarktis

90 Millionen Jahre alter Waldboden belegt unerwartet warmes Südpol-Klima in der Kreidezeit

Ein internationales Forscherteam unter Leitung von Geowissenschaftlern des Alfred-Wegener-Institutes, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI)...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste SARS-CoV-2-Genome aus Österreich veröffentlicht

03.04.2020 | Biowissenschaften Chemie

Projekt »Lade-PV« gestartet: Fahrzeugintegrierte PV für Elektro-Nutzfahrzeuge

03.04.2020 | Energie und Elektrotechnik

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics