Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Diese Zellen sagen, wo’s lang geht

05.02.2016

Neurobiologen charakterisieren Nervenzellen, die aus Lichtveränderungen Bewegungen machen

Die Fähigkeit, Bewegungen und ihre Richtung zu erkennen, ist überlebenswichtig. Nur so können Feinde vermieden, Beute gefangen oder eine Straße sicher überquert werden. Bewegungen werden jedoch nicht direkt erkannt, sondern entstehen erst durch spätere Berechnungen.


Klarheit im Zelldickicht. Vier Nervenzelltypen (Tm9, 4, 1 und 2) sind entscheidend an der Berechnung richtungsselektiver Signale in T5-Neuronen (gelb) beteiligt.

© MPI für Neurobiologie

Wissenschaftler vom Max-Planck-Institut für Neurobiologie in Martinsried haben nun herausgefunden, dass an der Berechnung richtungsselektiver Signale vier Nervenzelltypen beteiligt sind – doppelt so viele als bisher angenommen. Diese weitere Parallele zum Sehsystem der Wirbeltiere zeigt, wie viel wir auch über unser eigenes Sehen von Fliegen lernen können.

Beim Überqueren einer Straße ist es von Vorteil zu erkennen, in welche Richtung sich die Autos in der Nähe bewegen. Die einzelnen Lichtsinneszellen der Augen nehmen jedoch nur punktuelle Helligkeitsveränderungen wahr: ein Punkt wird heller ("Licht an") oder dunkler ("Licht aus"). Erst im nachgeschalteten Nervenzellnetzwerk entsteht daraus eine Bewegung.

Wie das Gehirn aus Lichtveränderungen eine Bewegung berechnet, entschlüsseln Alexander Borst und sein Team am Max-Planck-Institut für Neurobiologie Zelle für Zelle. Ihr Untersuchungsobjekt ist die Fruchtfliege: ein Meister des Bewegungssehen mit vergleichsweise kleinem Gehirn. Zwar befinden sich in dem für das Bewegungssehen zuständigen Bereich des Fruchtfliegengehirns immer noch mehr als 50.000 Nervenzellen. Die Forscher vermuten jedoch, dass dies "übersichtlich" genug ist, um die Verschaltung auf Zellebene zu verstehen.

Nun ist es den Wissenschaftlern gelungen, die Nervenzellen im Fliegenhirn-Schaltkreis zu identifizieren, die als erste im Netzwerk die Richtung einer Bewegung wahrnehmen. Dabei handelt es sich um die sogenannten T5-Zellen. Hierfür haben sie die Antworteigenschaften von den vier vorgeschalteten Zellen analysiert, den sogenannten Tm-Zellen. Eine ganze Reihe von Versuchen mit Hilfe des Zwei-Photonen-Mikroskops, der Elektrophysiologie und Verhaltensanalysen zeigte, dass die Tm-Zellen nur auf bestimmte Helligkeitsänderungen ("Licht aus") reagieren.

Die T5-Zellen werden dagegen nur durch Bewegungen in eine bestimmte Richtung aktiviert. Die Signale von allen vier Tm-Zellen sind notwendig, damit in einer T5-Zelle ein richtungsselektives Signal entsteht. "Das war ein überraschendes Ergebnis, denn die mathematischen Modelle gehen von Signalen aus nur zwei Eingangszellen aus", berichtet Etienne Serbe, einer der beiden Erstautoren der Studie. "Spannend ist, dass auch das Sehsystem der Wirbeltiere ähnlich von diesem Modell abweicht", ergänzt Matthias Meier, der andere Erstautor. Auch die richtungsselektiven Zellen von Wirbeltieren erhalten Information von mehr als zwei Zellen.

Erst vor kurzem zeigten Alexander Borst und ein Kollege die vielen Gemeinsamkeiten in den Sehsystem-Schaltplänen von Fliegen und Mäusen (Übersichtsartikel in Nature Neuroscience). "Auch die neu entdeckte Übereinstimmung zeigt, dass wir durch die Untersuchungen an der Fliege grundlegende Einblicke in die Schaltpläne des Gehirns bekommen", resümiert Alexander Borst. "Ich bin schon gespannt, welche Aufgaben wir für die nächsten Zellen im Schaltkreis entdecken."


Ansprechpartner


Dr. Stefanie Merker
Max-Planck-Institut für Neurobiologie, Martinsried
Telefon: +49 89 8578-3514

E-Mail: merker@neuro.mpg.de

Prof. Dr. Alexander Borst
Max-Planck-Institut für Neurobiologie, Martinsried
Telefon: +49 89 8578-3251

Fax: +49 89 8578-3252

E-Mail: borst@neuro.mpg.de


Originalpublikation
Etienne Serbe, Matthias Meier, Aljoscha Leonhardt und Alexander Borst

Comprehensive characterization of the major presynaptic elements to the Drosophila OFF motion detector.

Neuron; 4 February, 2016

Dr. Stefanie Merker | Max-Planck-Institut für Neurobiologie, Martinsried

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Chemischer Jonglage-Akt mit drei Teilchen
24.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Antibiotika und ihre Systembiologie
24.05.2019 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Direkte Abbildung von Riesenmolekülen

Physiker am Max-Planck-Institut für Quantenoptik (MPQ) konnten riesige zweiatomige Moleküle erzeugen und mit einem hochaufgelösten Mikroskop direkt abbilden.

Die optische Auflösung einzelner Konstituenten herkömmlicher Moleküle ist aufgrund der kleinen Bindungslänge im Sub-Nanometerbereich bisher nicht möglich....

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: Geometrie eines Elektrons erstmals bestimmt

Physiker der Universität Basel können erstmals zeigen, wie ein einzelnes Elektron in einem künstlichen Atom aussieht. Mithilfe einer neu entwickelten Methode sind sie in der Lage, die Aufenthaltswahrscheinlichkeit eines Elektrons im Raum darzustellen. Dadurch lässt sich die Kontrolle von Elektronenspins verbessern, die als kleinste Informationseinheit eines zukünftigen Quantencomputers dienen könnten. Die Experimente wurden in «Physical Review Letters» und die Theorie dazu in «Physical Review B» veröffentlicht.

Der Spin eines Elektrons ist ein vielversprechender Kandidat, um als kleinste Informationseinheit (Qubit) eines Quantencomputers genutzt zu werden. Diesen Spin...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Optische Superlinsen aus Gold

Oldenburger Forscher entwickeln neues optisches Mikroskop mit extrem hoher Auflösung

Eine kegelförmige Spitze aus Gold bildet das Kernstück eines neuen, extrem leistungsfähigen optischen Mikroskops, das Oldenburger Wissenschaftler in der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Früherkennung 2.0: Mit Präzisionsmedizin Screeningverfahren weiterentwickeln

23.05.2019 | Veranstaltungen

Kindermediziner tagen in Leipzig

22.05.2019 | Veranstaltungen

Jubiläumskongress zur Radiologie der Zukunft

22.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Direkte Abbildung von Riesenmolekülen

24.05.2019 | Physik Astronomie

Antibiotika und ihre Systembiologie

24.05.2019 | Biowissenschaften Chemie

Kinderradiologie: Auf dem Weg zur nächsten technischen Revolution

24.05.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics