Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Zacken in der Viruskrone

07.04.2020

Max-Planck-Forscher wollen das Oberflächenprotein des Coronavirus analysieren und so Bindungsstellen für Impfstoffe und Medikamente aufspüren

Das Glykoprotein Spike verleiht dem Coronavirus seinen Namen: Wie Zacken einer Krone stehen die Moleküle von der Virushülle ab. Forschende des Max-Planck-Instituts für Biophysik in Frankfurt analysieren nun die Struktur dieses Proteins.


Oberfläche des CoV-2-Virus. Ein Molekül des spike-Proteins ist durchscheinend dargestellt, um seine komplexe räumliche Struktur hervorzuheben.

MPI f. Biophysik

Auf diese Weise wollen sie potenzielle Ziele für Antikörper und Hemmstoffe identifizieren – eine wichtige Voraussetzung für die Entwicklung neuer Impfstoffe und Medikamente gegen das SARS-CoV-2-Virus.

Das Coronavirus braucht das Spike-Protein, damit es eine Zelle befallen kann. Das Protein bindet vor allem an einen Rezeptor namens ACE2 auf der Oberfläche menschlicher Zellen. Das Virus kann dann mit der Zellmembran verschmelzen und sein Erbgut ins Zellinnere entlassen.

Das Spike-Protein ist aber nicht nur die schärfste Waffe des Virus, es ist auch seine Achillesferse, denn seine exponierte Lage macht es zum bevorzugten Angriffspunkt für das Immunsystem.

Antikörper können das Virus anhand des Spike-Proteins erkennen, daran binden und es so als Ziel für Immunzellen markieren. Aber das Virus hat noch einen weiteren Trick auf Lager: Mithilfe von Zuckermolekülen versucht es, seine Spike-Proteine vor den Immunzellen zu verbergen.

Schutzschirm aus Zucker

Die Max-Planck-Forscher analysieren daher nicht nur das Spike-Protein selbst, sondern auch den Zucker-Schutzschirm sowie die Membranhülle des Virus. Sie wollen dabei über die bislang existierenden statischen Strukturen hinaus berechnen, wie sich die Spike-Proteine auf der Virusoberfläche bewegen und wie sie ihre Form verändern – und das mit einer Genauigkeit, die der Größe eines Atoms entspricht.

Diese Berechnungen werden winzigste Details der Proteinstruktur enthüllen. Sie sind aber extrem aufwendig: „Wir brauchen dazu die Supercomputer der Max-Planck-Gesellschaft mit ihrer enormen Rechenleistung“, erklärt Gerhard Hummer, Direktor am Max-Planck-Institut für Biophysik.

Mit ihrem dynamischen Modell des Spike-Proteins wollen die Forscher Bindungsdomänen aufspüren, an die Antikörper verlässlich binden können. Auch Bindungsstellen für Hemmstoffe hoffen Hummer und sein Team so zu entdecken.

Diese wollen sie mit den Bindungseigenschaften bereits existierender Medikamente am Computer vergleichen und so Wirkstoffe identifizieren, die das spike-Protein blockieren können.

„Medikamente, die bereits auf dem Markt sind, umzuwidmen, geht natürlich viel schneller als neue Wirkstoffe ausfindig zu machen und in langwierigen klinischen Studien zu testen“, sagt Hummer.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Gerhard Hummer
Max-Planck-Institut für Biophysik, Frankfurt am Main
Tel.: +49 69 6303-2501
Email: gerhard.hummer@biophys.mpg.de

Weitere Informationen:

http://www.mpg.de/14652142 Pressemitteilung der MPG

Dr. Harald Rösch | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wundheilung detailliert aufgeschlüsselt
03.06.2020 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Ein einzelnes Gen bestimmt das Geschlecht von Pappeln
03.06.2020 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetische Kristallschichten für den Computer von Morgen

Ist die Elektronik, so wie wir sie kennen, am Ende?

Der Einsatz moderner elektronischer Schaltkreise für immer leistungsfähigere Rechentechnik und mobile Endgeräte stößt durch die zunehmende Miniaturisierung in...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: Neue Messung verschärft altes Problem

Seit Jahrzehnten rätseln Astrophysiker über zwei markante Röntgen-Emissionslinien von hochgeladenem Eisen: ihr gemessenes Helligkeitsverhältnis stimmt nicht mit dem berechneten überein. Das beeinträchtigt die Bestimmung der Temperatur und Dichte von Plasmen. Neue sorgfältige, hoch-präzise Messungen und Berechnungen mit modernsten Methoden schließen nun alle bisher vorgeschlagenen Erklärungen für diese Diskrepanz aus und verschärfen damit das Problem.

Heiße astrophysikalische Plasmen erfüllen den intergalaktischen Raum und leuchten hell in Sternatmosphären, aktiven Galaxienkernen und Supernova-Überresten....

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Neuartiges Covid-19-Schnelltestverfahren auf Basis innovativer DNA-Polymerasen entwickelt

Eine Forschungskooperation der Universität Konstanz unter Federführung von Professor Dr. Christof Hauck (Fachbereich Biologie) mit Beteiligung des Klinikum Konstanz, eines Konstanzer Diagnostiklabors und des Konstanzer Unternehmens myPOLS Biotec, einer Ausgründung aus der Arbeitsgruppe für Organische Chemie / Zelluläre Chemie der Universität Konstanz, hat ein neuartiges Covid-19-Schnelltestverfahren entwickelt. Dieser Test ermöglicht es, Ergebnisse in der Hälfte der Zeit zu ermitteln – im Vergleich zur klassischen Polymerase-Ketten-Reaktion (PCR).

Die frühe Identifikation von Patienten, die mit dem neuartigen Coronavirus (SARS-CoV-2) infiziert sind, ist zentrale Voraussetzung bei der globalen Bewältigung...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gebäudewärme mit "grünem" Wasserstoff oder "grünem" Strom?

26.05.2020 | Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Magnetische Kristallschichten für den Computer von Morgen

03.06.2020 | Informationstechnologie

Wundheilung detailliert aufgeschlüsselt

03.06.2020 | Biowissenschaften Chemie

Ein einzelnes Gen bestimmt das Geschlecht von Pappeln

03.06.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics