Die wahrscheinlich kleinsten Stabmagnete der Welt

Der Jenaer Chemiker Dr. Michael Böhme an einem Hochleistungsrechner der Universität Jena. (Foto: Jan-Peter Kasper/FSU)

Sogenannte Einzelketten-Magnete sind Verbindungen, bei denen bestimmte magnetische Metall-Ionen – etwa Kobalt – wie auf einer Perlenkette aufgereiht sind. „Die einzelnen Metallzentren bilden zusammen jeweils eine magnetische Domäne“, sagt Prof. Dr. Winfried Plass, der Böhmes Arbeit betreute.

„Diese Domänen können magnetische Informationen speichern.“ Deren genaue Eigenschaften lassen sich aber nur schwer interpretieren oder vorhersagen. „Diese Systeme sind hochkomplex“, ergänzt Dr. Michael Böhme.

„Zum einen sind die Ketten in der Wirklichkeit ja nicht unendlich – das heißt, auch ihre Enden wirken sich auf die Eigenschaften aus. Andererseits sind die Metallzentren nicht identisch aufgebaut. Je nachdem in welcher Reihenfolge sie angeordnet sind, wirkt sich das auch auf den Magnetismus aus, den wir am Ende im Experiment beobachten.“

Er fügt hinzu: „Das bringt die bisherigen theoretischen Modelle an ihre Grenzen, mit denen wir diese Eigenschaften interpretieren oder vorhersagen.“

Näher an der Wirklichkeit

Dazu komme ein weiteres Problem, sagt Prof. Plass: „Die bisher verfügbaren Computer sind nicht leistungsfähig genug, um die Eigenschaften langer Ketten zu berechnen. Für die sogenannten ab-initio-Berechnungen brauchen sie für ein einzelnes Metallzentrum etwa eine Woche. Eine komplette Domäne aus mehreren Zentren zu berechnen, ist mit aktuellen Computern nicht durchführbar.“

Bereits in den 1920er Jahren wurde das sogenannte Ising-Modell entwickelt, das magnetische Molekülketten stark vereinfacht betrachtet. „Im Wesentlichen wird das Ising-Modell seit einhundert Jahren bis heute benutzt“, sagt Plass. „Was Michael Böhme jetzt gemacht hat, war, ein weniger idealisiertes Modell auf der Basis von ab-initio-Berechnungen zu entwickeln, das näher an der Wirklichkeit liegt.“

„Neben den eigentlichen Metallzentren sind auch die Bindeglieder wichtig, die die Wechselwirkung zwischen den magnetischen Zentren vermitteln“, führt Böhme weiter aus. „Diese Informationen erhalten wir, indem wir das theoretische Modell an die tatsächlich erhaltenen Messdaten anpassen. Auf diese Weise können wir schließlich die Eigenschaften der Domänen berechnen. Das erlaubt uns auch Vorhersagen darüber, wie sich bisher unbekannte Einzelketten-Magnete verhalten.“

Ringe als „unendliche“ Kette

Statt eine quasi endlose Kette zu berechnen, wendete Böhme sein Modell auf Ringe mit drei, sechs, neun und zwölf Gliedern an. „Zwölf ist die höchstmögliche Zahl für uns, weil es hier 4.096 mögliche Zustände gibt, die berechnet werden müssen“, erklärt Böhme. Prof. Plass ergänzt: „Wir können aber von diesem Punkt aus die Eigenschaften längerer Ketten durch Extrapolation sehr gut vorhersagen.“

„Magnetische Materialien sind sehr gut geeignet, um Informationen zu speichern“, weiß Plass. „Einzelne, magnetische Moleküle haben zudem das Potenzial, viel mehr Information unterzubringen als die bisherigen Speichermedien, bei denen einzelne Bereiche magnetisiert werden.“

Prof. Dr. Winfried Plass
Institut für Anorganische und Analytische Chemie der Friedrich-Schiller-Universität Jena
Humboldtstraße 8
07743 Jena
Tel.: 03641 / 948130
E-Mail: sekr.plass[at]uni-jena.de

Böhme, M. und Plass, W.: How to link theory and experiment for single-chain magnets beyond the Ising model: magnetic properties modeled from ab initio calculations of molecular fragments, Chemical Science (2019), DOI: 10.1039/C9SC02735A

Media Contact

Marco Körner idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-jena.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer