Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Farbspiele des Tintenfischs

06.08.2014

Max-Planck-Forscher untersuchen die Farbwellen von Metasepia tullbergi

Manche Kopffüßler sind Meister des Farbspiels: Sie können nicht nur ihre Hautfarbe an die unmittelbare Umgebung anpassen und sich so vor Feinden tarnen. Sie produzieren auch über ihren Körper wandernde Farbwellen, beispielsweise beim Paarungs- und Jagdverhalten. Was die Tiere mit diesen dynamischen Mustern ausdrücken wollen, ist bislang noch unbekannt. Wissenschaftler vom Max-Planck-Institut für Hirnforschung in Frankfurt haben nun mit Metasepia tullbergi eine Tintenfisch-Art entdeckt, an der sich die Entstehung der Farbwellen gut untersuchen lässt. Sie haben dabei wichtige Eigenschaften der Wellen analysiert und können dadurch auf mögliche zugrunde liegende Nervenzell-Netzwerke schließen.


Der Tintenfisch Metasepia tullbergi ist nicht nur bunt, er kann sogar Farbwellen auf seiner Haut erzeugen.

© Stephan Junek


Metasepia tullbergi macht seinem englischen Namen alle Ehre: "Paintpot Cuttlefish" oder Farbtopf-Tintenfisch.

© Stephan Junek

Die zu den Tintenfischen gehörenden Kalmare, Kraken und Sepien können ihre Farbe innerhalb kürzester Zeit verändern. Ihre Haut enthält Millionen elastischer Pigmentzellen, so genannter Chromatophoren, die von Muskelzellen umgeben sind. Ziehen sich die Muskeln zusammen, verkleinern sie die Pigmentzellen und die Färbung verschwindet. Entspannen sich die Muskeln, färbt sich die Haut an dieser Stelle. Auf diese Weise können die Tiere verschiedenste Farbmuster erzeugen, darunter auch dunkle Balken, die über die Mantelregion des Tieres laufen. Diese im Englischen auch „passing clouds“ genannten Farbwellen entstehen durch die Aktivierung vieler miteinander verschalteter Pigmentzellen.

Der Tintenfisch Metasepia tullbergi stammt aus tropischen Gewässern. Er hat sich als idealer Modellorganismus zur Untersuchung wellenförmiger Farbmuster herausgestellt, da er sich nur langsam bewegt und sehr häufig solche Muster produziert. Mit Hilfe von Hochgeschwindigkeitskameras, die bis zu 100 Bilder pro Sekunde aufnehmen, haben die Forscher des Max-Planck-Instituts für Hirnforschung auf jeder Körperhälfte vier Regionen des Tintenfisch-Mantels identifiziert. Die in den insgesamt acht Regionen gebildeten Farbwellen laufen in unterschiedlicher Richtung über den Körper und überqueren dabei nicht die Grenzen zu benachbarten Arealen. Metasepia kann diese Regionen auf unterschiedliche Weise miteinander kombinieren und so verschiedene Farbspiele erzeugen.

Die Ausbreitungsgeschwindigkeit der Wellen kann um den Faktor 6 variieren. Alle gleichzeitig produzierten Wellen sind jedoch gleich schnell. Die Wellenlänge stimmt ungefähr mit der Wegstrecke ihrer Ausbreitung überein, so dass normalerweise in jeder Region immer nur ein Balken erscheint. Gleichzeitig aktive Regionen sind zudem perfekt synchronisiert – die Balken erreichen also exakt zur selben Zeit die Grenze ihrer Region. Die Forscher haben darüber hinaus beobachtet, dass die Farbmuster an einer Stelle verschwinden und an anderer Stelle wieder auftauchen können. Dieser wie ein Blinken wirkende Effekt beruht auf einem kurzzeitigen Verblassen des Balkens. Die scheinbar verschwundene Welle läuft folglich unsichtbar weiter und taucht dann wieder auf.

Die Ergebnisse der Frankfurter Wissenschaftler deuten darauf hin, dass die Farbwellen nicht von den Nervenzellen im Mantel des Tintenfischs produziert werden, die die dortige Muskulatur steuern. Stattdessen sind wahrscheinlich übergeordnete Nervenzellen dafür verantwortlich und bilden so genannte Zentrale Mustergeneratoren.  Solche Netzwerke können rhythmische und damit wellenförmige Aktivität erzeugen.

„Drei Arten von Netzwerken sind in der Lage, Wellen hervorzurufen, wie sie über den Körper von Metasepia tullbergi laufen. Aufgrund der beobachteten Eigenschaften der Farbmuster können wir eines der möglichen Netzwerke ausschließen“, erklärt Gilles Laurent, Direktor am Max-Planck-Institut in Frankfurt. Welchen der beiden verbleibenden Schaltkreise der Tintenfisch tatsächlich besitzt, können die Forscher anhand der Verhaltensuntersuchungen nicht bestimmen. Sobald aber weitere Analysen auf ein bestimmtes Netzwerk hindeuten, können die Ergebnisse helfen, seine Verschaltung und die biophysikalischen Eigenschaften aufzudecken.

Ansprechpartner 

Prof. Gilles Laurent

Max-Planck-Institut für Hirnforschung, Frankfurt am Main

Telefon: +49 69 850033-2001
Fax: +49 69 850033-2102

 

Originalpublikation

 
Andres Laan, Tamar Gutnick, Michael J. Kuba, and Gilles Laurent
Behavioral analysis of cuttlefish traveling waves and its implications for neural control
Current Biology, 4 August 2014 (DOI: 10.1016/j.cub.2014.06.027)

Prof. Gilles Laurent | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8330866/farbwellen_tintenfisch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics