Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die "dunkle Materie" im Protein-Universum

24.11.2015

Bioinformatiker der TUM sind Strukturen der dunklen Proteine auf der Spur

Ob Antikörper, Enzym oder Transportstoff: Proteine haben lebenswichtige Funktionen. Zwar können Wissenschaftler die dreidimensionale Struktur vieler Proteine zumindest teilweise aufklären. Doch für viele Protein-Bausteine oder sogar ganze Eiweißmoleküle wurde die Struktur noch nicht bestimmt. Diese "dunklen Proteine" könnten eine Schlüsselrolle für das Verständnis von Krankheiten spielen.


Nicht für alle Proteine ist die dreidimensionale Struktur bekannt. (Foto: petarg/fotolia)

Ein Team internationaler Wissenschaftler mit Beteiligung der Technischen Universität München (TUM) ist dem Geheimnis des "dunklen Proteoms" mit den Methoden der Bioinformatik einen Schritt näher gekommen. Proteinforschung und Biomedizin bilden einen Forschungsschwerpunkt der TUM.

15 Prozent der Masse eines durchschnittlichen Menschen: So groß ist der Anteil aller Proteine, das sogenannte Proteom. Die Eiweißmoleküle übernehmen essentielle Aufgaben im Körper und den Zellen. Sie bringen Stoffwechselprozesse in Gang, helfen bei der Abwehr von Krankheiten und sorgen für den Transport lebenswichtiger Stoffe.

Die dreidimensionale Struktur ist entscheidend für die Funktion dieser Proteine. Doch es existieren Proteine, die sich vollständig oder in bestimmten Bereichen von jeder bisher experimentell nachgewiesenen Struktur unterscheiden. Ihre Struktur kann daher nicht modelliert werden.

Forscher fassen diese Proteine und Protein-Bausteine unter dem Begriff "dunkle Proteine" und in der Gesamtheit als "dunkles Proteom" zusammen, in Anlehnung an die dunkle Materie im Weltall. Bisher war unter anderem noch nicht bekannt, wie viele der Proteine zum dunklen Proteom gehören.

Die Hälfte des Proteoms ist dunkel

Gemeinsam mit der Commonwealth Scientific and Industrial Research Organisation (CSIRO) in Sydney und der Universität Lissabon hat Andrea Schafferhans vom Lehrstuhl für Bioinformatik der TUM (Prof. Burkhard Rost) die Eigenschaften des "dunklen Proteoms" untersucht. Aus verschiedenen Datenbanken filterten die Wissenschaftler dazu Informationen, brachten sie in Verbindung miteinander und werteten die Daten aus.

Die Datenbank "Aquaria", ein Gemeinschaftsprojekt der CSIRO und der TUM, spielte dabei eine wichtige Rolle. Die Webseite ging Anfang 2015 online und bietet allen Forschern die Möglichkeit, sich die 3D-Struktur von Proteinsequenzen berechnen zu lassen. Dabei greift die Datenbank auf bereits vorhandene Strukturen zurück und erstellt das wahrscheinlichste Modell. Mithilfe der Webseite konnten die Forscher erkennen, welche Protein-Strukturen tatsächlich "dunkel" sind.

Das Ergebnis: Die Hälfte des Proteoms aller Lebewesen, deren Zellen einen Zellkern besitzen – wozu auch der Mensch zählt – gehört zum "dunklen Proteom". "Davon wiederum ist knapp die Hälfte strukturell völlig unbekannt", sagt Schafferhans.

Wenig Verwandte, kaum Wechselwirkungen mit anderen Proteinen

Außerdem konnten die Forscher folgende Eigenschaften für die dunklen Proteine bestimmen: Die meisten der "dunklen Proteine" sind kurz, haben nur wenige Interaktionen mit anderen Proteinen, werden häufig ausgeschieden und besitzen nur wenige evolutionäre Verwandte.

Weiterhin stellten die Wissenschaftler fest, dass einige der bisherigen Annahmen über die "dunklen Proteine" falsch waren. So gehören sie mehrheitlich nicht zu den ungeordneten Proteinen. Letztere nehmen erst ihre eigentliche Struktur an, wenn sie eine Funktion erfüllen. In der restlichen Zeit liegen sie in einer anderen Form vor. Auch handelt es sich bei den "dunklen Proteinen" nicht größtenteils um Proteine, die sich in einer Membran befinden. Membranen grenzen Zellbestandteile oder auch gesamte Zellen voneinander ab. Beide Punkte waren bislang Erklärungen dafür, dass die dunklen Proteine schwer strukturell bestimmbar sind.

Mit ihren Ergebnissen, die im  Fachjournal "Proceedings of the National Academy of Sciences" veröffentlicht sind,  haben die Forscher eine wichtige Grundlage geschaffen, um die geheimnisvollen Eiweißmoleküle in Zukunft besser analysieren zu können. Die Forscher wollen außerdem das "dunkle Proteom" mehr in den Fokus der Aufmerksamkeit rücken. Dort könnten Proteine zu finden sein, die eine Schlüsselrolle für die Gesundheit des Menschen spielen.

Hintergrund:
Die TUM verknüpft im Forschungsschwerpunkt Biomedizin Grundlagen- und Anwendungsforschung. Zum Konzept gehören die Forschungsneubauten TUM Center for Functional Protein Assemblies (CPA), das Bayerische Kernresonanzzentrum, das Zentralinstitut für translationale Krebsfoschung der TUM (TranslaTUM) und das Forschungszentrum für Multiple Sklerose der Klaus Tschira-Stiftung. Die MUNICH SCHOOL OF BIOENGINEERING der TUM schafft als Integratives Forschungszentrum die gemeinsame Lehr- und Forschungsplattform für alle einschlägigen, aus den verschiedenen Fakultäten kommenden Aktivitäten des medizinrelevanten Ingenieurwesens einschließlich der bildgebenden Technologien.

Die TUM ist zudem maßgeblich am Exzellenzcluster "Center for Integrated Protein Science Munich" (CIPSM) beteiligt.

Veröffentlichung:
Nelson Perdigãoa et al.: Unexpected features of the dark proteome. Proceedings of the National Academy of Sciences (2015). DOI: 10.1073/pnas.1508380112

Kontakt:
Andrea Schafferhans
Technische Universität München
Lehrstuhl für Bioinformatik, Prof. Burkhard Rost
Tel.: +49 289 17833
andrea.schafferhans@in.tum.de

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
https://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/32762/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Türsteher im Gehirn
06.08.2020 | Institute of Science and Technology Austria

nachricht Peptide: Forschungs-Erfolg mit den kleinen Geschwistern der Proteine
06.08.2020 | Hochschule Coburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Projektabschluss ScanCut: Filigranere Steckverbinder dank Laserschneiden

Eine entscheidende Ergänzung zum Stanzen von Kontakten erarbeiteten Wissenschaftlerinnen und Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT. Die Aachener haben im Rahmen des EFRE-Forschungsprojekts ScanCut zusammen mit Industriepartnern aus Nordrhein-Westfalen ein hybrides Fertigungsverfahren zum Laserschneiden von dünnwandigen Metallbändern entwickelt, wodurch auch winzige Details von Kontaktteilen umweltfreundlich, hochpräzise und effizient gefertigt werden können.

Sie sind unscheinbar und winzig, trotzdem steht und fällt der Einsatz eines modernen Fahrzeugs mit ihnen: Die Rede ist von mehreren Tausend Steckverbindern im...

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: Elektrogesponnene Vliese mit gerichteten Fasern für die Sehnen- und Bänderrekostruktion

Sportunfälle und der demografische Wandel sorgen für eine gesteigerte Nachfrage an neuen Möglichkeiten zur Regeneration von Bändern und Sehnen. Eine Kooperation aus italienischen und deutschen Wissenschaftler*innen forschen gemeinsam an neuen Materialien, um dieser Nachfrage gerecht zu werden.

Dem Team ist es gelungen elektrogesponnene Vliese mit hochgerichteten Fasern zu generieren, die eine geeignete Basis für Ersatzmaterialien für Sehnen und...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: Neue Strategie gegen Osteoporose

Ein internationales Forschungsteam hat einen neuen Ansatzpunkt gefunden, über den man möglicherweise den Knochenabbau bei Osteoporose verringern und die Knochengesundheit erhalten kann.

Die Osteoporose ist die häufigste altersbedingte Knochenkrankheit. Weltweit sind hunderte Millionen Menschen davon betroffen. Es wird geschätzt, dass eine von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovationstage 2020 – digital

06.08.2020 | Veranstaltungen

Innovationen der Luftfracht: 5. Air Cargo Conference real und digital

04.08.2020 | Veranstaltungen

T-Shirts aus Holz, Möbel aus Popcorn – wie nachwachsende Rohstoffe fossile Ressourcen ersetzen können

30.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der Türsteher im Gehirn

06.08.2020 | Biowissenschaften Chemie

Kognitive Energiesysteme: Neues Kompetenzzentrum sucht Partner aus Wissenschaft und Wirtschaft

06.08.2020 | Energie und Elektrotechnik

Projektabschluss ScanCut: Filigranere Steckverbinder dank Laserschneiden

06.08.2020 | Verfahrenstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics